Подробное решение и рисунок. Очень Найдите площадь основания и объем правильной треугольной пирамиды, у которой высота равна 10 4 корень 3, а двугранный угол при стороне основания равен 45°
Осталось найти боковую площадь.Она состоит из 2 равных равнобедренных треугольника с основанием b и еще одного равнобедренного с основанием ВС. Основанием высоты пирамиды будет точка О, которая является центром вписанной окружности в ΔАВС,надо вычислить этот радиус-чтобы потом через него вычислить высоты боковых граней. r=(BC/2)√((2b-BC)/(2b+BC))=b*cosβ*√((1-cosβ)/(1+cosβ))(вычисления я опустила) Тогда высота боковых граней будет KM=r/cosФ=b*cosβ*√((1-cosβ)/(1+cosβ))/cosФ S(бок)=(b+b+BC)*KM/2=(2b+2b*cosβ)*b*cosβ*√((1-cosβ)/(1+cosβ))/2cosФ= =(1+cosβ)*b^2*cosβ*√((1-cosβ)/(1+cosβ))/cosФ S(пол)=S(осн)+S(бок)=b^2*sin2β/2+(1+cosβ)*b^2*cosβ*√((1-cosβ)/(1+cosβ))/cosФ
Основанием высоты пирамиды будет точка О, которая является центром вписанной окружности в ΔАВС,надо вычислить этот радиус-чтобы потом через него вычислить высоты боковых граней.
r=(BC/2)√((2b-BC)/(2b+BC))=b*cosβ*√((1-cosβ)/(1+cosβ))(вычисления я опустила)
Тогда высота боковых граней будет
KM=r/cosФ=b*cosβ*√((1-cosβ)/(1+cosβ))/cosФ
S(бок)=(b+b+BC)*KM/2=(2b+2b*cosβ)*b*cosβ*√((1-cosβ)/(1+cosβ))/2cosФ=
=(1+cosβ)*b^2*cosβ*√((1-cosβ)/(1+cosβ))/cosФ
S(пол)=S(осн)+S(бок)=b^2*sin2β/2+(1+cosβ)*b^2*cosβ*√((1-cosβ)/(1+cosβ))/cosФ
АК, ВМ и СТ - медианы треугольника АВС.
Надо доказать, что АК + ВМ + СТ < АВ + ВС + АС.
Отложим на луче АК отрезок КО = АК.
КО = АК по построению, ВК = КС, так как АК медиана.
Если в четырехугольнике диагонали точкой пересечения делятся пополам, то это параллелограмм.
Значит АВОС - параллелограмм. Тогда ВО = АС.
Каждая сторона треугольника меньше суммы двух других сторон, значит в треугольнике АВО: АО < AB + BO, а значит и 2АК < АВ + АС, т.е.
АК < 1/2 (АВ + АС)
Аналогично, построив параллелограммы с диагоналями, содержащими две другие медианы, докажем , что
ВМ < 1/2 (ВА + ВС) и
СТ < 1/2 (СА + СВ)
Сложим эти три неравенства:
АК + ВМ + СТ < 1/2 АВ + 1/2 АС + 1/2 ВА + 1/2 ВС + 1/2 СА + 1/2 СВ
АК + ВМ + СТ < АВ + АС + ВС
АК + ВМ + СТ < Рabc