ПОДРОБНОЕ РЕШЕНИЕ
3. Треугольник ABC задан координатами своих вершин A(3;3), B(7;6), С(6;-1).
a) Докажите что ∆ABС – равнобедренный.
б) Найдите высоту, проведенную из вершины A и площадь этого треугольника.
4. Определите при каких значениях x, вектор a ⃗{2-x;2x+3} коллинеарен вектору d ⃗{-1;5}
Пусть мы имеем трапецию АВСД с равными сторонами АВ=ВС=СД и диагональю АС = АД.
В трапеции ∠САД=∠ВСА, а так как в данном случае АВ=ВС, то ∠ВАС=∠ВСА. Отсюда находим, что диагональ АС - биссектриса угла А, а так как трапеция равнобедренная, то ∠САД = (1/2)∠А = (1/2)∠Д (1).
Треугольник АСД равнобедренный, поэтому ∠Д=∠АСД.
В этом треугольнике ∠САД = 180°-2∠Д (2).
Приравняем уравнения (1) и (2):
(1/2)∠Д = 180°-2∠Д,
∠Д = 360° - 4∠Д,
5∠Д = 360°,
∠Д = 360°/5 = 72°.
ответ: ∠А = ∠Д = 72°,
∠В = ∠С = 180° - 72° = 108°.
ответ:В первом прямоугольном треугольнике с: h=6 см и отрезком а1=8 см
Находим сторону а с теоремы Пифагора: а^2=h^2+a1^2
a^2=36+64
a=10 см
Во втором прямоугольном треугольнике с:
h=6 см
а-8=2
По теореме Пифагора: h^2+2^2=с^2
36+4=с^2
ОСНОВАНИЕ РАВНО 6,32456 (2 корня из десяти)
Построй равнобедренный треугольник, у которого маленькое основание и большая боковая сторона. Обозначь его АВС (В -вершина, АС-основание), построй высоту к боковой стороне ВС и обозначь её АН. АН=6см, ВН=8см, треугольник АВН = прямоугольный, т. к. АН-высота. Из этого треугольника Найдём гипотенузу АВ= кв. корень из 36+64= кв. корень из 100=10. Т. К. треугольник равнобедренный, то и ВС=10. Значит НС=10-8=2.
Рассмотрим треугольник АНС - прямоугольный, у которого известны катеты АН=6, НС=2. По теореме Пифагора найдём гипотенузу АС= кв. корень из 36+4=кв. корень из 40=2 корня из 10. Это и есть основание равнобедренного треугольника.