а). Точка, симметричная данной относительно оси 0Х, лежит на прямой, проходящей через эту точку перпендикулярно оси 0Х, на расстоянии, равном расстоянию от данной точки до оси 0Х. То есть это точка В(-1,5;-2).
б). Точка, симметричная данной относительно оси 0Y, лежит на прямой, проходящей через эту точку перпендикулярно оси 0Y, перпендикулярно оси 0Y, на расстоянии, равном расстоянию от данной точки до оси 0Y. То есть это точка С(1,5;2).
в). Точка, симметричная данной относительно начала координат, лежит на прямой, проходящей через данную точку и начало координат, на расстоянии, равном расстоянию от данной точки до начала координат.
а). Точка, симметричная данной относительно оси 0Х, лежит на прямой, проходящей через эту точку перпендикулярно оси 0Х, на расстоянии, равном расстоянию от данной точки до оси 0Х. То есть это точка В(-1,5;-2).
б). Точка, симметричная данной относительно оси 0Y, лежит на прямой, проходящей через эту точку перпендикулярно оси 0Y, перпендикулярно оси 0Y, на расстоянии, равном расстоянию от данной точки до оси 0Y. То есть это точка С(1,5;2).
в). Точка, симметричная данной относительно начала координат, лежит на прямой, проходящей через данную точку и начало координат, на расстоянии, равном расстоянию от данной точки до начала координат.
То есть это точка D(1,5;-2).
ответ:Треугольник АВС
<АВС=180-(22+50)=180-72=108 градусов
Углы АВС и СВD-смежные,их сумма равна 180 градусов,тогда
<CBD=180-108=72 градуса
По условию задачи треугольник ВСD равнобедренный,т к
ВС=ВD
Значит,угол СВD-угол при вершине равнобедренного треугольника,а углы при основании равны между собой
<ВСD=<D=(180-72):2=108:2=54 градуса
Номер 2
Угол АLC и угол АLB-смежные углы,их сумма равна 180 градусов,тогда
<АLB=180-121=59 градусов
Треугольник ABLИзвестны два угла,узнаём третий
<ВАL=180-(59+101)=180-160=20 градусов
Т к АL биссектриса,то
<А=20•2=40 градусов
Тогда
<АСВ=180-(40+101)=180-141=39 градусов
Объяснение: