Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
2) проведём высоты трапеции вв1 и сс1.рассмотрим тр-к сс1д: угол д=углу а (т. к. трапеция равнобедр.); угол дсс1=30 гр, с1д=сд/2,с1д=4v3.по т. пифагора h=сс1=12.
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129
Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301
дано: авсд-трапеция (ад-ниж. осн-е), ав=сд, ас пер-на сд, ад=16v3,угол а=60 гр.
найти: sавсд
решение:
1) рассмотрим тр-к сад: угол сад=30 гр, значит, сд=ад/2,сд=8v3.
2) проведём высоты трапеции вв1 и сс1.рассмотрим тр-к сс1д: угол д=углу а (т. к. трапеция равнобедр.); угол дсс1=30 гр, с1д=сд/2,с1д=4v3.по т. пифагора h=сс1=12.
3)ав1=с1д (равнобедр. трапеция). вс=в1с1=ад-ав1-с1д; вс=8v3.
4)sabcd=(bc+ad)*h/2; sabcd=(8v3+16v3)*12/2=144v3.
otvet: 144v3.