Постройте окружность с центром в точке О. Проведите диаметр АВ и хорду ВС. Известно, что угол АОС равен 50 градусов. Найдите угол ВСО.
№ 2. К окружности с центром в точке О провели касательную АВ (В-точка касания). Найдите радиус окружности, если АВ=8 см и угол АОВ равен 45 градусов.
№ 3. Постройте треугольник АВС, если АВ =7 см, ВС = 4 см, АС = 5 см.
№ 4. Один из острых углов прямоугольного треугольника равен 42 градуса. Найдите угол между высотой и биссектрисой, проведенными из вершины прямого угла треугольника.
№ 5. Окружность, вписанная в треугольник DEF, касается стороны DF в точке А такой, что АD-АF=14 см. Вершина Е удалена от точки касания вписанной окружности со стороной ЕF на 4 см. Найдите стороны треугольника, если его периметр равен 60 см.
a = 13/√2 ≈ 9,19
меньше диаметра цилиндра, равного
d = 6*2 = 12.
И возможны два варианта размещения квадрата в цилиндре -
а) тривиальный. Квадрат вертикален, его плоскость параллельна оси цилиндра. Высота цилиндра равна стороне квадрата,
h = 13/√2
б) наклонный, центр квадрата совпадает с центром цилиндра
На рисунке проекция квадрата на основание - синяя
b - проекция наклонной стороны квадрата на плоскость основания
По Пифагору:
a² + b² = d²
b² = 12²- (13/√2)² = 12² - 13²/2 = 144 - 169/2 = 119/2
b = √(119/2)
И теперь ещё раз по теореме Пифагора, но уже для вертикально расположенного прямоугольного треугольника
h² + b² = a²
h² = a² - b² = (13/√2)² - (√(119/2))² = 169/2 - 119/2 = 50/2 = 25
h = √25 = 5
И это ответ :)
Опустим из точки О перпендикуляр на ребро SC в точку К.
Тогда угол ОКD и будет искомым углом между плоскостями ASC и DSC.
Найдём длину ОК из треугольника ОКС.
OK = ОС*sin 60°.
ОС = OD.
Треугольник ОКD - прямоугольный с прямым углом О.
Катет ОD - это половина диагонали основания (квадрата), он равен:
ОD = (1/2)ВD = (1/2)*(18√2) = 9√2.
OK = ОС*sin 60° = 9√2*(√3/2) = 9√6/2.
Тогда искомый угол ОКD равен:
tg ОКD = ОD/OK = 9√2/(9√6/2) = 2/√3 =2√3/3.
Угол ОКD = arg tg (2√3/3) = arc tg1,154701 = 0,857072 радиан = 49,10661°.