Из точки O, лежащей вне двух параллельных плоскостей α и β, проведены 3 луча, пересекающие плоскости α и β соответственно в точках A,B,C и A1,B1,C1 (OA<OA1). Найдите периметр A1B1C1, если OA=m, AA1=n, AB=c, BC=a., CA=b.
Если две параллельные плоскости пересечены другой плоскостью, то линии их пересечения параллельны. Значит треугольник А1ОВ1 подобен АОВ - Плоскость пересечения принадлежит обоим треугольникам, а основания параллельны, так как являются линиями пересечения. Таким же образом треугольники B1OC1 подобен BOC, а C1OD1 подобен COD. Коэффициент подобия находим из соотношения OA1 /OA . Если стороны треугольников подобны значит и сами треугольники ABC и A1B1C1 подобны. Периметр ABC умноженный на коэффициент подобия будет равен периметру A1B1C1. периметр A1B1C1 = (a+b+c) (m+n)/m
Равносторонних трапеций не существует! Существуют равнобочные или равнобедренные трапеции (что одно и то же). Если дана равнобочная трапеция, то имеем. Из свойств параллельных прямых выводим, что треугольник, образованный боковой стороной, меньшим основанием и диагональю является равнобедренным (углы при диагонали равны). Таких треугольников два вообще-то. И имеем, что длины боковых сторон равны длине меньшего основания. То что длины боковых сторон одинаковы следует из того, что трапеция равнобочная. Углы при большем основании трапеции опять же одинаковы и равны 2*30 = 60 градусов. Вырезав зеленый прямоугольник (см. рисунок) и приставив друг к другу фиолетовые треугольники, получим равносторонний треугольник (т.к. все его углы будут по 60 градусов). И имеем для этого треугольника: a=4-a; где a - длина боковой стороны, а также (по доказанному) длина меньшего основания. Т.е. a=4-a, <=> 2a=4; a=2. Pтрапеции = a+a+a+4 = 3a+4 = 3*2 +4 = 10.
Найдите периметр A1B1C1, если OA=m, AA1=n, AB=c, BC=a., CA=b.
Если две параллельные плоскости пересечены другой плоскостью, то линии их пересечения параллельны. Значит треугольник А1ОВ1 подобен АОВ - Плоскость пересечения принадлежит обоим треугольникам, а основания параллельны, так как являются линиями пересечения. Таким же образом треугольники B1OC1 подобен BOC, а C1OD1 подобен COD. Коэффициент подобия находим из соотношения OA1 /OA . Если стороны треугольников подобны значит и сами треугольники ABC и A1B1C1 подобны.
Периметр ABC умноженный на коэффициент подобия будет равен периметру A1B1C1.
периметр A1B1C1 = (a+b+c) (m+n)/m
a=4-a; где a - длина боковой стороны, а также (по доказанному) длина меньшего основания. Т.е. a=4-a, <=> 2a=4; a=2.
Pтрапеции = a+a+a+4 = 3a+4 = 3*2 +4 = 10.