Ра́диус (лат. radius — спица колеса, луч) — отрезок, соединяющий центр окружности (или сферы) с любой точкой, лежащей на окружности (или поверхности сферы), а также длина этого отрезка. Окру́жность — замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра), лежащей в той же плоскости, что и кривая. Диаметр окружности является хордой, проходящей через её центр; такая хорда имеет максимальную длину. Хо́рда — отрезок, соединяющий две точки данной кривой (например, окружности, эллипса, параболы). Круг – множество точек плоскости, удаленных от заданной точки этой плоскости на расстояние, не превышающее заданное (радиус круга).
Уравнение биссектрисы первой координатной четверти у = х. Чтобы найти координаты центра заданной окружности надо решить систему: у = х (х-2)²+(у-5)²=(√5)². Вместо у подставим х, раскроем скобки и приведём подобные. х²-4х+4+х²-10х+25 = 5, 2х²-14х+24 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=(-14)^2-4*2*24=196-4*2*24=196-8*24=196-192=4;Дискриминант больше 0, уравнение имеет 2 корня: x₁=(√4-(-14))/(2*2)=(2-(-14))/(2*2)=(2+14)/(2*2)=16/(2*2)=16/4=4;
x₂=(-√4-(-14))/(2*2)=(-2-(-14))/(2*2)=(-2+14)/(2*2)=12/(2*2)=12/4=3. Координаты по оси Оу равны координатам по оси Ох. Имеем 2 центра окружности: (4; 4) и (3; 3).
Получили 2 точки для центра окружности, поэтому и 2 решения: (х-4)²+(у-4)² = 5, (х-3)²+у(-3)² = 5.
Окру́жность — замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра), лежащей в той же плоскости, что и кривая.
Диаметр окружности является хордой, проходящей через её центр; такая хорда имеет максимальную длину.
Хо́рда — отрезок, соединяющий две точки данной кривой (например, окружности, эллипса, параболы).
Круг – множество точек плоскости, удаленных от заданной точки этой плоскости на расстояние, не превышающее заданное (радиус круга).
Чтобы найти координаты центра заданной окружности надо решить систему: у = х
(х-2)²+(у-5)²=(√5)². Вместо у подставим х, раскроем скобки и приведём подобные.
х²-4х+4+х²-10х+25 = 5,
2х²-14х+24 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-14)^2-4*2*24=196-4*2*24=196-8*24=196-192=4;Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√4-(-14))/(2*2)=(2-(-14))/(2*2)=(2+14)/(2*2)=16/(2*2)=16/4=4;
x₂=(-√4-(-14))/(2*2)=(-2-(-14))/(2*2)=(-2+14)/(2*2)=12/(2*2)=12/4=3.
Координаты по оси Оу равны координатам по оси Ох.
Имеем 2 центра окружности: (4; 4) и (3; 3).
Получили 2 точки для центра окружности, поэтому и 2 решения:
(х-4)²+(у-4)² = 5,
(х-3)²+у(-3)² = 5.