Постройте сечение куба abcd a1b1c1d1 плоскостью, проходящей через вершину b1 и две точки m и n, которые лежат на ребрах aa1 и cc1. рассмотрите различные случаи размещения точек m и n.
побудуйте переріз куба abcd a1b1c1d1 площиною, що проходить через вершину b1 і дві точки m і n, які лежать на ребрах aa1 і cc1 . розгляньте різні випадки розміщення точок m і n.
122° больший из углов, образованный при пересечении биссектрисы острого угла прямоугольного треугольника и противоположного катета
Объяснение:
сумма углов треугольника равна 180 градусов
Угол, который делит биссектриса равен: 180-90-26=64°
биссектриса в треугольнике делит угол пополам
64°/2 = 32° один из острых углов в треугольнике, образованном биссектрисой
180-90-32=58° меньший из углов, образованный при пересечении биссектрисы острого угла прямоугольного треугольника и противоположного катета
180-58=122° больший из углов, образованный при пересечении биссектрисы острого угла прямоугольного треугольника и противоположного катета
Параллелограмм — четырехугольник, у которого противоположные стороны попарно параллельны.
Объяснение:
В параллелограмме противоположные стороны равны и противоположные углы равны.
Диагонали параллелограмма точкой пересечения делятся пополам.
Углы, прилежащие к любой стороне, в сумме равны .
Диагонали параллелограмма делят его на два равных треугольника.
Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон: .
Признаки параллелограмма:
Если противоположные стороны четырехугольника попарно параллельны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике диагонали, пересекаясь, точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.
Середины сторон произвольного (в том числе невыпуклого или пространственного) четырехугольника являются вершинами параллелограмма Вариньона.
Стороны этого параллелограмма параллельны соответствующим диагоналям четырехугольника . Периметр параллелограмма Вариньона равен сумме длин диагоналей исходного четырехугольника, а площадь параллелограмма Вариньона равна половине площади исходного четырехугольника.