Радиус перпендикулярен касательной в точке касания, а отрезки касательных АМ и ВМ равны по свойству касательных из одной точки. Следовательно, прямоугольные треугольники ОАМ и ОВМ равны по катету и общей гипотенузе. Тогда <AOM=<BOM=60°, а <АМО=<BMO=30° и МО=16см, так как ОА=ОВ=8см - катет против угла 30°.По Пифагору АМ=ВМ=√(16²-8²)=8√3см.
Треугольник АВМ равносторонний, так как угол при его вершине равен 60°.
Это просто: смотри: сначала найди градусную меру угла 9-ти угольника (360:9=40) теперь проведи из центра этого девятиугольника отрезки, соединяющинся с вершинами углов. По условию твой многоугольник правильный, значит все треугольники, которые ты получишь будут равнобедренными. Рассмотри один из них, тебе известно основание и угол. (40:2=20 - это градусная мера угла при основании). В р/б треугольнике высота=медиана=биссектрисса. Теперь рассмотри получившийся прямоугольный тругольник: воспользуйся формулой косинуса: получится, что гиппотенуза этого треугольника - и есть радиус многоугольника. Радиус = cos20•половину основания многоугольника
Радиус перпендикулярен касательной в точке касания, а отрезки касательных АМ и ВМ равны по свойству касательных из одной точки. Следовательно, прямоугольные треугольники ОАМ и ОВМ равны по катету и общей гипотенузе. Тогда <AOM=<BOM=60°, а <АМО=<BMO=30° и МО=16см, так как ОА=ОВ=8см - катет против угла 30°.По Пифагору АМ=ВМ=√(16²-8²)=8√3см.
Треугольник АВМ равносторонний, так как угол при его вершине равен 60°.
Следовательно, его периметр равен 3*8√3=24√3см.
ответ: периметр равен 24√3 см.
Подробнее - на -
Объяснение: