Позначимо на площині точку О. Задамо перетворення площини за таким правилом (див. Малюнок): кожній точці Х площини поставимо У у відповідність таку точку Х1, що точка О є серединою відрізка ХХ1 (точці О поставимо у відповідність саму точку О). ПОБУДУЙТЕ ОБРАЗИ ТОЧОК А і В ПРИ ЗАДАНОМУ ПЕРЕТВОРЕНІ. ЧИ Є ЦЕ ПЕРЕТВОРЕННЯ ОБОРОТНИМ?
- АВ=СВ, т.к. АВС равнобедренный;
- AD=CE по условию;
- углы А и С треуг-ка АВС равны как углы при основании равнобедренного треугольника (по свойству равнобедренного треуг-ка).
У равных треугольников ABD и CBE равны соответственные стороны BD и ВЕ. Значит, DBE равнобедренный.
3). Рассмотрим треуг-ки АСВ и ADB. Они равны по второму признаку: сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треуг-ка:
- АВ - общая сторона;
- <CAB=<DAB, т.к. АВ - биссектриса;
- <ABC=<ABD по условию.
У равных треугольников равны соответственные стороны АС и AD.
Дано: Треугольник АВС. АВ=ВСб М∈BD, K∈AC. MK║AB. <ABC=126°,<BAC=27°.
Найти <MKD, <KMD и <MDK.
Решение.
Треугольник АВС равнобедренный, следовательно BD - биссектриса, высота и медиана треугольника. <BAC=<BCA=27°, Значит
<ABD = (1/2)*(<ABC) = 126/2 = 63°. <BDA=<MDK = 90°.
MK параллельна АВ, значит <MKD=<BAC=27°, а <KMD=<ABD=63°, как соответственные углы при параллельных прямых АВ и МК и секущих AD и BD соответственно.
ответ: <MKD=27°, <KMD=63°, <MDK=90°.