Практическая работа №1: «Сумма углов выпуклого многоугольника» Цель: Вывести формулу, выражающей сумму углов выпуклого многоугольника. Инструменты: Карандаш, линейка, ластик. Задания: Постройте 5 выпуклых многоугольников. Из одной вершины проведите диагонали. Сравните число сторон многоугольника с числом получившихся треугольников, заполните таблицу. Выразите сумму углов каждого многоугольника через сумму углов треугольника.
1)Углом наз. часть плоскости ограниченная двумя лучами; 2)Угол=180 3)Фигуры, которые совпадают при наложении называются РАВНЫМИ 4)Точка находящаяся на отрезке и равноудаленная от его концов! 5)Проходящий через вершину угла и делящий его пополам. 6)Два угла называются смежными, если у них одна сторона общая, а другие стороны являются дополнительными лучами. сумма смежных углов равна 180°.
7)Вертикальные углы - два угла, у которых стороны одного являются продолжениями сторон другого. Вертикальные углы равны.
1) а не параллельно b, т.к. угол4=180-60=120градусов (т.к. угол3 и угол4 смежные)
угол4 и угол 1 являются накрест лежащими, но они не равны, значит а не параллельна b.
2) угол3+угол4=180градусов, т.к. они односторонние.
пусть угол3=х, тогда угол4=х+30
х+х+30=180
2х=150
х=75 градусов (это угол3)
75+30=105градусов (это угол4)
3) рассмотрим треугольники ЕСМ и МВД. У них: ЕМ=МВ по условию, СМ=МД по условию, уголЕМС=углуДМВ т.к. они вертикальные. Значит, треугольникЕСМ=треугольникуМВД по I признаку. => ЕС=ВД.
не понятно, что там требуется доказать, если их параллельность, то тогда следующее:
Из равенства треугольников следует, что уголЕСМ=углуМДВ, а они являются накрест лежащими для ЕС и ВД и секущей СД. Следовательно, ЕС II ВД.
4) уголСДМ=углуМДК=68:2=34градуса, т.к. ДМ бисектриса.
уголСДМ=углуДМК=34градуса, т.к. они накрест лежащие для СД II МК и секущей ДМ.
5)Проходящий через вершину угла и делящий его пополам. 6)Два угла называются смежными, если у них одна сторона общая, а другие стороны являются дополнительными лучами. сумма смежных углов равна 180°.
7)Вертикальные углы - два угла, у которых стороны одного являются продолжениями сторон другого. Вертикальные углы равны.
8)Те, между которыми 90 градусов.
1) а не параллельно b, т.к. угол4=180-60=120градусов (т.к. угол3 и угол4 смежные)
угол4 и угол 1 являются накрест лежащими, но они не равны, значит а не параллельна b.
2) угол3+угол4=180градусов, т.к. они односторонние.
пусть угол3=х, тогда угол4=х+30
х+х+30=180
2х=150
х=75 градусов (это угол3)
75+30=105градусов (это угол4)
3) рассмотрим треугольники ЕСМ и МВД. У них: ЕМ=МВ по условию, СМ=МД по условию, уголЕМС=углуДМВ т.к. они вертикальные. Значит, треугольникЕСМ=треугольникуМВД по I признаку. => ЕС=ВД.
не понятно, что там требуется доказать, если их параллельность, то тогда следующее:
Из равенства треугольников следует, что уголЕСМ=углуМДВ, а они являются накрест лежащими для ЕС и ВД и секущей СД. Следовательно, ЕС II ВД.
4) уголСДМ=углуМДК=68:2=34градуса, т.к. ДМ бисектриса.
уголСДМ=углуДМК=34градуса, т.к. они накрест лежащие для СД II МК и секущей ДМ.
уголДКМ=180-34-34=112градусов (т.к. сумма углов треугольника =180градусов)