Практическое — постройте систему координат и отметьте в ней точки а4; 3) и в(-6; 5). постройте векторы оа и ов , где 0 - начало координат. постройте вектор 0с такой, что ос = oa + ob . найдите коорди- наты точки c. проанализируйте полученные данные.
Параллельный перенос задается формулами
\begin{gathered} < var > x'=x+a;\\ y'=y+b;\\ z'=z+c < /var > \end{gathered}
<var>x
′
=x+a;
y
′
=y+b;
z
′
=z+c</var>
Так как при параллельном переносе точка А(-2;3;5) переходит в точку А1(1;-1;2), то
\begin{gathered} < var > 1=-2+a;\\ -1=3+b;\\ 2=5+c < /var > \end{gathered}
<var>1=−2+a;
−1=3+b;
2=5+c</var>
\begin{gathered} < var > a=1+2;\\ b=-1-3;\\ c=2-5 < /var > \end{gathered}
<var>a=1+2;
b=−1−3;
c=2−5</var>
\begin{gathered} < var > a=3;\\ b=-4;\\ c=-3 < /var > \end{gathered}
<var>a=3;
b=−4;
c=−3</var>
Данный параллельный перенос задается формулами
\begin{gathered} < var > x'=x+3;\\ y'=y-4;\\ z'=z-3 < /var > \end{gathered}
<var>x
′
=x+3;
y
′
=y−4;
z
′
=z−3</var>
Поэтому точка В(-4;-3;1) перейдет в точку c координатами
\begin{gathered} < var > x'=-4+3;\\ y'=-3-4;\\ z'=1-3 < /var > \end{gathered}
<var>x
′
=−4+3;
y
′
=−3−4;
z
′
=1−3</var>
\begin{gathered} < var > x'=-1;\\ y'=-7;\\ z'=-2 < /var > \end{gathered}
<var>x
′
=−1;
y
′
=−7;
z
′
=−2</var>
т.е. В1(-1;-7;-2)
см объяснение
Объяснение:
1) ∠4 = ∠3= 120° как соответственные углы,
2) см. фото. Пусть ∠1 = 62°.
∠3 = ∠1 = 62° как вертикальные углы,
∠5 = ∠1 = 62° как соответственные углы,
∠7 = ∠5 = 62° как вертикальные углы,
∠2 = 180° - ∠1 по свойству смежных углов, 180° - 62° =118°
∠4 = ∠2 = 118° как вертикальные,
∠6 = ∠2 = 118° как соответственные,
∠8 = ∠6 = 118° как вертикальные.
3) Углы при параллельных прямых и секущей-
Накрест лежащие углы равны, то есть, если их сумма равна 110°, то каждый из них равен 55° (110:2=55)
Найдем смежный угол. Сумма смежных углов равна 180°.
180-55=125°