Представить вектор в виде суммы двух векторов Из треугольника OBN ON = Из треугольника ASR AS = Из треугольника XKH XH = Из треугольника AMD MD = Из треугольника FPO OP = Из треугольника XVI IV =
Цитаты: "Двугранный угол — пространственная геометрическая фигура, образованная двумя полуплоскостями, исходящими из одной прямой, а также часть пространства, ограниченная этими полуплоскостями". "Двугранные углы измеряются линейным углом, то есть углом, образованным пересечением двугранного угла с плоскостью, перпендикулярной к его ребру". В нашем случае двугранный угол C1ADC - это угол, образованный двумя полуплоскостями, исходящими из одной прямой AD и проходящими через точки С1 и С. Он измеряется линейным углом С1DС, так как плоскость CDC1 перпендикулярна ребру АD. Тогда по Пифагору DС = √(АС²-AD²) = √(АС²-AD²) =√(625-336) = 17. Тангенс угла tg(<С1DC) = СС1/DC (отношение противолежащего катета к прилежащему) = 17/17 =1. Значит искомое значение градусной меры двугранного угла C1ADC равна 45°.
Тангенс острого угла в прямоугольном треугольнике - отношение противолежащего катета к прилежащему. Проведем высоту к основанию из вершины тупого угла. В полученном прямоугольном треугольнике катет против острого угла (высота) относится к прилежащему катету как 4:3. Обозначим высоту 4x. Египетский треугольник, боковая сторона (гипотенуза) равна 5x. Средняя линия равна полусумме оснований и равна высоте, следовательно сумма оснований 8x. Таким образом периметр равен 18x.
"Двугранный угол — пространственная геометрическая фигура, образованная двумя полуплоскостями, исходящими из одной прямой, а также часть пространства, ограниченная этими полуплоскостями".
"Двугранные углы измеряются линейным углом, то есть углом, образованным пересечением двугранного угла с плоскостью, перпендикулярной к его ребру".
В нашем случае двугранный угол C1ADC - это угол, образованный двумя полуплоскостями, исходящими из одной прямой AD и проходящими через точки С1 и С. Он измеряется линейным углом С1DС, так как плоскость CDC1 перпендикулярна ребру АD.
Тогда по Пифагору DС = √(АС²-AD²) = √(АС²-AD²) =√(625-336) = 17.
Тангенс угла tg(<С1DC) = СС1/DC (отношение противолежащего катета к прилежащему) = 17/17 =1.
Значит искомое значение градусной меры двугранного угла C1ADC равна 45°.
Тангенс острого угла в прямоугольном треугольнике - отношение противолежащего катета к прилежащему. Проведем высоту к основанию из вершины тупого угла. В полученном прямоугольном треугольнике катет против острого угла (высота) относится к прилежащему катету как 4:3. Обозначим высоту 4x. Египетский треугольник, боковая сторона (гипотенуза) равна 5x. Средняя линия равна полусумме оснований и равна высоте, следовательно сумма оснований 8x. Таким образом периметр равен 18x.
18x=36 <=> x=2
Боковая сторона равна 5x =10