Если боковые грани наклонены к плоскости основания под одинаковым углом (в данном случае α), то высота пирамиды проходит через центр окружности вписанной в основании.
S(осн) =b*b*sinβ =b²sinβ.
С другой стороны S(осн) =p*r =(4b/2)*r =2b*r⇒r =b²sinβ/2b = bsinβ/2.(Это можно было написать сразу).
S(бок) =4*b*h/2=2bh , где h апофема боковой грани.
r =h*cosα ⇒h =r/cosα = (bsinβ/2)/cosα =bsinβ/(2cosα) .
Следовательно: S(бок)=2bh=2b*(bsinβ/(2cosα)) = b²sinβ/sinα (И это можно было написать сразу).
Диагонали выпуклого четырехугольника равны a и b и пересекаются под углом a=45 градусов. Найти площадь четырехугольника с вершинами на середина сторон данного четырехугольника
Объяснение:
S(пол) = S(осн)+S(бок) .
Если боковые грани наклонены к плоскости основания под одинаковым углом (в данном случае α), то высота пирамиды проходит через центр окружности вписанной в основании.
S(осн) =b*b*sinβ =b²sinβ.
С другой стороны S(осн) =p*r =(4b/2)*r =2b*r⇒r =b²sinβ/2b = bsinβ/2.(Это можно было написать сразу).
S(бок) =4*b*h/2=2bh , где h апофема боковой грани.
r =h*cosα ⇒h =r/cosα = (bsinβ/2)/cosα =bsinβ/(2cosα) .
Следовательно: S(бок)=2bh=2b*(bsinβ/(2cosα)) = b²sinβ/sinα (И это можно было написать сразу).
Окончательно :
S(пол) = b²sinβ+ b²sinβ/sinα =b²sinβ(1+ 1/sinα)=b²(sinβ/sinα)*(1+ sinα).
ответ: b²(sinβ/sinα)*(1+ sinα).
1+sinα = 1+cos(π/2 -α) =2cos²(π/4 -α/2).
1+sinα =sinπ/2 +sinα =...
списано вот здесь
Диагонали выпуклого четырехугольника равны a и b и пересекаются под углом a=45 градусов. Найти площадь четырехугольника с вершинами на середина сторон данного четырехугольника
Объяснение:
МКНР -выпуклый четырехугольник ,МН=а , КР=b ,О-точка пересечения диагоналей , ∠КОН=45°.
Пусть А, В, С, Д-середины сторон. Тогда
АД-средняя линия ΔМВН , АД=1/2*а;
ВС-средняя линия ΔМРН , ВС=1/2*а;
АВ-средняя линия ΔКНР , АВ=1/2*b ;
СД-средняя линия ΔКМР , АВ=1/2*b . Получили , что противоположные стороны попарно равны⇒ АВСД-параллелограмм , по признаку параллелограмма.
S=a*b*sinα , Найдем угол α между сторонами параллелограмма.
Т.к АД║МН , АВ║КР , по свойству средней линии , то синяя фигура на чертеже -параллелограмм, у которой противоположные углы равны⇒∠ДАВ=45°.
S=АД*АВ*sin∠ДАВ =1/2*а*1/2*b*sin45°=1/4*ab*√2/2=(ab√2)/8.