В равнобедренном треугольнике две равные стороны называются боковыми, а третья - основанием треугольника. Точка пересечения равных сторон — вершина равнобедренного треугольника. Угол между одинаковыми сторонами считается углом при вершине, а два других — углами при основании треугольника. Являются доказанными такие свойства равнобедренного треугольника: - равенство углов при основании, - совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника, - равенство между собой двух других биссектрис (медиан, высот), - пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии. Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.
Т.к периметр это сумма длин всех сторон, то P = a + b + c + d, но наша фигура - параллелограмм, т.е у неё противоположные (параллельные) стороны равны, т.е a = b, c = d, а отсюда следует что P = a + a + c + c = 2(a + c), но с другой стороны a - c = 4, составим и решим систему уравнений:
Являются доказанными такие свойства равнобедренного треугольника:
- равенство углов при основании,
- совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника,
- равенство между собой двух других биссектрис (медиан, высот),
- пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии.
Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.
Дано:
P = 80 см
a - c = 4 см
a || b
c || d
a - ?
b - ?
c - ?
d - ?
Решение
Т.к периметр это сумма длин всех сторон, то P = a + b + c + d, но наша фигура - параллелограмм, т.е у неё противоположные (параллельные) стороны равны, т.е a = b, c = d, а отсюда следует что P = a + a + c + c = 2(a + c), но с другой стороны a - c = 4, составим и решим систему уравнений:
80 = 2(a+c)
a-c=4
a = 4+c
80 = 2(4+c+c) = 8 + 4c
72 = 4c
c = 18 см.
a = 22 см.
a = b = 22 см., c = d = 18 см.
ответ: a = b = 22 см., c = d = 18см.