Прочитай задание и дополни доказательство. Задача.
Отрезки MN MN и KLKL пересекаются в точке QQ так, что MQ=QNMQ=QN, \angle KNM = \angle NML∠KNM=∠NML. Докажи, что \angle NKL=\angle MLK∠NKL=∠MLK.
Выбери верные варианты из списков.
Анализ решения задачи.
Чтобы доказать, что \angle NKL∠NKL
\angle MLK∠MLK, необходимо доказать, что △MQL△MQL
△△
.
Для этого нужно найти
:
\angle KNM = \angle∠KNM=∠
(
),
MQ=MQ=
(по условию),
\angle MQL = \angle∠MQL=∠
(
).
Значит, △MQL△MQL
△△
по второму признаку равенства треугольников.
Следовательно, \angle NKL=\angle MLK∠NKL=∠MLK
Ясно, что a = c*x; b = c*y; (c гипотенуза, a b катеты);
По теореме косинусов
m2^2 = c^2 + (a/2)^2 - 2*c*(a/2)*x;
или 73 = с^2 +a^2/4 - a^2 = c^2 - 3*a^2/4; (использовано a = c*x)
точно так же 52 = c^2 - 3*b^2/4;
если это сложить, получится 125 = 5*с^2/4; c = 10;
Теперь уже легко найти a и b
73 = c^2 - 3*a^2/4; a^2 = 36; a = 6; b = 8; получился "египетский" треугольник.
Косинус его большего острого угла равен 3/5; (а меньшего 4/5)
То есть если M - середина ВС, то М - так же и середина A'H.
Интересно вот что. В треугольнике A'AH получилось, что AM и ОН - медианы, то есть они делятся точкой их пересечения G в пропорции 1/2, считая от О. То есть 2*OG = GH; При этом AM - медиана треугольника АВС, и G расположена как раз в точке пересечения медиан треугольника АВС (то есть на расстоянии AG = 2*GM, то есть у треугольников АВС и А'AH совпадают точки пересечения медиан.).
Это означает, что в произвольном треугольнике точка пересечения медиан лежит на отрезке, соединяющем точку пересечения высот с центром описанной окружности и делит это отрезок в пропорции 1/2, считая от центра описанной окружности.
Это - знаменитая теорема Эйлера. :))) - между прочим ... а прямая ОН называется прямой Эйлера :)))