Простите что так мало ( больше нету Равнобедренные треугольники АВС и ADC имеют общее основание АC. Прямая BD пересекает отрезок АС в точке Е. Докажите, что АЕ = ЕС.
И если не сложно вот это (не обязательно) ❤️
На рисунке 222 АВ =ВС, АВК=СВМ. Докажите, что ВМ = ВК
1 задача:
Доведения:
Рассмотрим ΔABD и ΔАВС
1) АВ = ВС (ΔАВС - равнобедренный с основанием АС)
2) AD = DC (ΔАВС - равнобедренный с основанием АС)
3) BD - общая.
Итак, ΔABD = ΔСВС за III признаком piвностi треугольников.
3 этого следует, что ∟ABD = ∟CBD. Тогда BD - биссектриса ∟АВС.
В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой, поэтому АЕ = ЕС.
2 задача
Рассмотрим ΔАВС - равнобедренный (АВ = ВС),
тогда ∟А = ∟C (свойство равнобедренного треугольника).
Рассмотрим ΔАВК и ΔСВМ.
1) АВ = ВС (по условию)
2) ∟А = ∟C (ΔАВС - равнобедренный)
3) ∟ABK = ∟CBM (по условию).
Итак, ΔАВК = ΔСВМ за II признаком piвностi треугольников.
3 этого следует pавность всех соответствующих Элементы, а именно ВМ = ВК.