Прямі а і b, b і с, а і с перетинаються, і точки їх перетину не збігаються. Які з цих тверджень правильні? а) прямі а, b, с проходять через одну точку;
б) точки перетину прямих лежать на одній прямій;
в) прямі а, b, с лежать в одній площині;
г) прямі а, b, с не лежать в одній площині.
Обозначим вершины параллелепипеда АВСDD1FА1В1С1. Формула объема параллелепипеда V=S•H, где Ѕ - площадь грани, лежащей в основании, Н - высота, т.е. расстояние между параллельными (горизонтальными) гранями.
Ѕ(ромба)=d•d1/2=BD•AC/2=6•8/2=24 см² Диагонали ромба взаимно перпендикулярны и делят его на 4 равных прямоугольных треугольника, катеты которых равны половинам диагоналей. Из соотношения катетов 3:4, эти треугольники – так называемые египетские, ⇒ гипотенузы этих треугольников -стороны ромба– равны 5 см.
По условию все грани параллелепипеда - равные ромбы, ⇒ боковое ребро составляет с соседними сторонами основания равные углы. ∠А1АК=∠А1АМ. Площади равных граней равны, а их высоты – равные перпендикуляры.⇒ А1К=А1М. Из формулы площади параллелограмма h=S:a=24/5 см. По т.Пифагора АК=√(AA1²-A1К²)=√(5²-(24/5)²)=7/5 см.
Треугольники АКА1 и АМА1 равны по катетам и общей гипотенузе АА1 Проекции равных наклонных А1К и А1М равны. ⇒ НК=НМ. Отсюда прямоугольные ∆ АКН=∆ АМН, их острые углы равны. Поэтому основание высоты А1Н параллелепипеда лежит на биссектрисе угла ВАD, т.е. на диагонали ромба. Прямоугольные ∆ АКН ~∆ АВО по общему острому углу при А. Из подобия следует отношение АН:АВ=АК:АО ⇒АН:5=(7/5):4 ⇒ АН=7/4. т.Пифагора А1Н=(√(AA1²-АН*)=√((400-49):4))=√(9•39/16). АН=0,75√39. V(параллелеп)=24• 0,75√39=18√39 или ≈ 112,41 см³
Углы при основании равнобедренного треугольника равны.
Обозначим их х. Так как сумма углов треугольника равна 180°, то угол при вершине равен (180° - 2х).
Теперь рассмотрим 2 случая:
1) угол при основании в 5 раз меньше суммы двух других:
(180° - 2x) + x = 5x
6x = 180°
x = 30°
Тогда угол при вершине:
180° - 2 · 30° = 120°
ответ: 30°, 30°, 120°.
2) угол при вершине в 5 раз меньше суммы двух других:
x + x = 5(180° - 2x)
2x = 900° - 10x
12x = 900°
x = 75°
Тогда угол при вершине:
180° - 2 · 75° = 180° - 150° = 30°
ответ: 75°, 75°, 30°.