Треугольник АБС - прямоугольный. Если АС=ВС, а гипотенуза не может быть равна катету, то АС и БС - актеты, угол С прямой, АВ- гипотенуза. Проведем высоту СН, равную 18 см., к АВ. СН перпендикулярна АВ, т.е угол СНВ=90, угол СНА=90. Раз АС=ВС, то треугольник равнобедренный, углы А и В равны по 45 каждый (90:2=45). Рассмотрим треугольник АНС. угол НАС=45, угол СНА=90. улол АНС=90-45=45. и равен углу НАС, значит треугольник равнобедренный и АН-СН=18. Рассмотрим треугольник СНВ. угол СВН так же равен 45, уголСНВ прямой. угол НСВ=90-45=45. треугольник равнобедренный. СН=ВН=18. Отсюда гиппотенуза АВ=АН+НВ=18+18=36см
Если АС=ВС, а гипотенуза не может быть равна катету, то АС и БС - актеты, угол С прямой, АВ- гипотенуза. Проведем высоту СН, равную 18 см., к АВ. СН перпендикулярна АВ, т.е угол СНВ=90, угол СНА=90. Раз АС=ВС, то треугольник равнобедренный, углы А и В равны по 45 каждый (90:2=45). Рассмотрим треугольник АНС. угол НАС=45, угол СНА=90. улол АНС=90-45=45. и равен углу НАС, значит треугольник равнобедренный и АН-СН=18. Рассмотрим треугольник СНВ. угол СВН так же равен 45, уголСНВ прямой. угол НСВ=90-45=45. треугольник равнобедренный. СН=ВН=18. Отсюда гиппотенуза АВ=АН+НВ=18+18=36см
Объяснение:
1)а) Дана сумма двух вертикальных углов,тогда два угла равны
168°:2 = 84°
(360°-168°) :2 = 192°: 2 = 96°
два угла по 84° и два по 96°
б)100°:2 = 50°
(360°-100°) :2 = 260°: 2 = 130°
два угла по 50° и два по 130°
2)а) По определению смежных углов
Пусть один угол -х°, тогда второй угол-(180°-х°)
180°-х-х=42°
2х=180°-42°
2х=138°
х=69° один угол
180°-х=180°-69°=111°
два угла по 69°; два угла по 111°
б)180°-х-х=36°
2х=180°-36°
2х=144°
х=72° один угол
180°-х=180°-72°=108°
два угла по 72°; два угла по 108°
3) Пусть один угол - х, тогда второй- 8х тогда получим
2*(х+8х)= 360°
2*9х=360°
18х=360°
х= 20°
8х=8*20=160°
два угла по 20° и два угла по 160°