Считаем тр-к равнобедренным, т.О пересечение биссектрис; если угол при вершине по условию 120 гр., то равные углы при основании А и С=(180-120)/2=30гр.; биссектриса АЕ делит угол А на 2 по 15 гр.; рассм. тр-к АОД, он прямоугольный, т.к. биссектриса ВД является медианой и высотой равнобедренного тр-ка. Угол АОД=90-15=75 гр. по свойству острых углов прямоугольного тр-ка. Углы АОД и ВОЕ вертикальные, значит угол ВОЕ=75гр. Аналогично угол FOB=75гр. Значит угол между биссектрисами АЕ и CF угол FOE=75+75=150 гр.
биссектриса АЕ делит угол А на 2 по 15 гр.; рассм. тр-к АОД, он прямоугольный, т.к. биссектриса ВД является медианой и высотой равнобедренного тр-ка.
Угол АОД=90-15=75 гр. по свойству острых углов прямоугольного тр-ка.
Углы АОД и ВОЕ вертикальные, значит угол ВОЕ=75гр.
Аналогично угол FOB=75гр. Значит угол между биссектрисами АЕ и CF угол FOE=75+75=150 гр.
W, V - центры
Проведем WK⊥AE, VL⊥AE
BK=1, DL=1 (перпендикуляр из центра к хорде делит ее пополам)
AK=3, AL=6
Проведем WN⊥VL
Понятно, что W - середина AV, N - середина VL
WK=VN=NL=x
Rw =WB =√(WK^2+BK^2) =√(x^2+1)
Rv =VD =√(VL^2+DL^2) =√(4x^2+1)
WV =Rw+Rv (точка касания лежит на линии центров)
WV =√(VN^2+WN^2) => Rw+Rv =√(x^2+9)
√(x^2+1) + √(4x^2+1) = √(x^2+9)
x^2 +1 +4x^2 +1 +2√(x^2+1)√(4x^2+1) = x^2 +9
4(x^2+1)(4x^2+1) = (7-4x^2)^2 // при 7-4x^2 >=0 => x<=√7/2
16x^4 +16x^2 +4x^2 +4 = 49 -56x^2 +16x^4
76x^2 = 45 => x=√(45/76)
Rw =√(45/76 +1) =√(121/76) =11/2√19
Rv =√(4*45/76 +1) =√(256/76) =8/√19