Прямоугольный треугольник вращается вокруг своего меньшего катета .Определи площадь боковой поверхности конуса ,который оброзовался .Длины катетов треугольника -16 и 30 см ответ : S бок.= п см 2
Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
Возьми транспортир (полукруглая линейка такая с числами-градусами) Ищешь на транспортире отметку 110, помечаешь ее, проводишь от этой пометки наклонную линию, и потом еще одну, обычную горизонтальную линию, чтобы получился угол. А чтобы проверить, что угол равен именно 110 градусам, подставь транспортир к углу так, чтобы кончик угла оказался ровно на середине низа полукруга в транспортире, и смотришь, на какую цифру показывает верхняя "палка" угла, если на 110, значит, естественно, все правильно.
Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
ответ: KD=10см.
Возьми транспортир (полукруглая линейка такая с числами-градусами) Ищешь на транспортире отметку 110, помечаешь ее, проводишь от этой пометки наклонную линию, и потом еще одну, обычную горизонтальную линию, чтобы получился угол. А чтобы проверить, что угол равен именно 110 градусам, подставь транспортир к углу так, чтобы кончик угла оказался ровно на середине низа полукруга в транспортире, и смотришь, на какую цифру показывает верхняя "палка" угла, если на 110, значит, естественно, все правильно.