Прямоугольный участок размером 42x60 покрывается плитками 6х6. можно ли покрыть этот участок ровными плитками 9х3? 7х15? обоснуйте свой ответ. если да, то сколько плиток для этого потребуется?
Перпендикуляр, проведенный через середину боковой стороны равнобедренного треугольника, делит высоту, проведенную к основанию, на отрезки 17 см и 8 см, считая от вершины. Найти площадь и периметр данного треугольника.
Обозначим вершины треугольника А, В, С, причем АВ=ВС.
Т.к. ∆ АВС - равнобедренный, высота ВН, проведенная к основанию, является медианой, и, следовательно, ВН - срединный перпендикуляр. Точка пересечения срединных перпендикуляров треугольника - центр описанной вокруг него окружности.
Расстояние от О до вершин А, В и С равно радиусу. R=ВО=СО=17 см.
∆ СОН - прямоугольный, его гипотенуза и один из катетов - из Пифагоровых троек ( 8, 15,17), ⇒, НС=15 см ( проверьте по т.Пифагора).
Отсюда АС=2•15=30 см
По т.Пифагора AB=ВС=√(BH*+CH*)=√(625+225)=√850=5√34 см
abc - равнобедренный треугольник, тк ав=ас=6. значит углы асв и авс равны между собой. найдём их: abc=acb = (180 - bac)/2 = (180-60)/2 = 60. то есть все углы у треугольника по 60. значит он равносторонний , и все стороны равны 6.
пусть точка e - середина bc. be=ec=3. найдём ае, который является и высотой и меридианой по теореме пифагора (если я не ошибаюсь с названием): ае = корень из (ас^2 - be^2) = корень из (36-9) = корень из (25) = 5.
теперь рассмотри треугольник dae. он прямоугольный (ad также перпендикулярно плоскости треугольника, как и bp. то есть ad образует прямой угол с любым отрезком или прямой, которые принадлежат плоскости треугольника. угол dae - прямой.)
опять же по теореме пифагора найдём гиппотенузу de:
de= корень из (ae^2 + da^2) = корень из (25+9) = корень из (36) = 6
Найти площадь и периметр данного треугольника.
Обозначим вершины треугольника А, В, С, причем АВ=ВС.
Т.к. ∆ АВС - равнобедренный, высота ВН, проведенная к основанию, является медианой, и, следовательно, ВН - срединный перпендикуляр. Точка пересечения срединных перпендикуляров треугольника - центр описанной вокруг него окружности.
Расстояние от О до вершин А, В и С равно радиусу. R=ВО=СО=17 см.
∆ СОН - прямоугольный, его гипотенуза и один из катетов - из Пифагоровых троек ( 8, 15,17), ⇒, НС=15 см ( проверьте по т.Пифагора).
Отсюда АС=2•15=30 см
По т.Пифагора AB=ВС=√(BH*+CH*)=√(625+225)=√850=5√34 см
Р=30+2•5√34=10•(3+√34) см
S=BH•CH=375 см²
abc - равнобедренный треугольник, тк ав=ас=6. значит углы асв и авс равны между собой. найдём их: abc=acb = (180 - bac)/2 = (180-60)/2 = 60. то есть все углы у треугольника по 60. значит он равносторонний , и все стороны равны 6.
пусть точка e - середина bc. be=ec=3. найдём ае, который является и высотой и меридианой по теореме пифагора (если я не ошибаюсь с названием): ае = корень из (ас^2 - be^2) = корень из (36-9) = корень из (25) = 5.
теперь рассмотри треугольник dae. он прямоугольный (ad также перпендикулярно плоскости треугольника, как и bp. то есть ad образует прямой угол с любым отрезком или прямой, которые принадлежат плоскости треугольника. угол dae - прямой.)
опять же по теореме пифагора найдём гиппотенузу de:
de= корень из (ae^2 + da^2) = корень из (25+9) = корень из (36) = 6
ответ: de=6