Расстояние от точки М до середины стороны квадрата (апофема пирамиды МАВСD) ≈ 11 см
Объяснение:
Дано:
Квадрат АВСD
MA = МВ = МС = MD = 12 см
α = 60°
MАВСD - правильная четырёхугольная пирамида
Найти:
Апофему А пирамиды
Опустим перпендикуляр из точки М на основание АВСD. Он пересечёт основание в точке О. МО - высота пирамиды. ОА - проекция бокового ребра МА пирамиды на основание, поэтому заданный в условии угол α = 60° - угол между боковым ребром МА и его проекцией ОА.
В прямоугольном треугольнике МАО (∠МОА = 90°) найдём катеты ОА и МО
МО = МА · sin α = 12 · sin α = 12 · 0,5√3 = 6√3 (см)
OA = MA · cos α = 12 · cos 60° = 12 · 0.5 = 6 (см)
ОА является половиной диагонали квадрата АВСD.
Сторона квадрата а = 2АО : √2 = 12 : √2 = 6√2 (cм)
Апофему пирамиды найдём, используя теорему Пифагора
Окружность360°, 3х+5х+10х=360° 18х=360 х=20 3*20=60 если начертит чертеж получим треугольник, две стороны которого равны радиусу, угол у вершины равен60° основание ьреугольника равно 12 см, отпустим с вершины треугольника на основание высоту, так как у нас треугольник равнобедренный, то эта высота будет и медианой и биссектрисой. когда отпусти высоту получим прямоугольный треуголник 12:2= 6 см, напротив лежит угол 30°, сторона в 6 см является катетом, а гипотенуза радиус, значит радиус равен 12см. по правилу катет лежащий напротив 30° равен половине гипотенузы.
Расстояние от точки М до середины стороны квадрата (апофема пирамиды МАВСD) ≈ 11 см
Объяснение:
Дано:
Квадрат АВСD
MA = МВ = МС = MD = 12 см
α = 60°
MАВСD - правильная четырёхугольная пирамида
Найти:
Апофему А пирамиды
Опустим перпендикуляр из точки М на основание АВСD. Он пересечёт основание в точке О. МО - высота пирамиды. ОА - проекция бокового ребра МА пирамиды на основание, поэтому заданный в условии угол α = 60° - угол между боковым ребром МА и его проекцией ОА.
В прямоугольном треугольнике МАО (∠МОА = 90°) найдём катеты ОА и МО
МО = МА · sin α = 12 · sin α = 12 · 0,5√3 = 6√3 (см)
OA = MA · cos α = 12 · cos 60° = 12 · 0.5 = 6 (см)
ОА является половиной диагонали квадрата АВСD.
Сторона квадрата а = 2АО : √2 = 12 : √2 = 6√2 (cм)
Апофему пирамиды найдём, используя теорему Пифагора
А² = МО² + (0,5а)² = (6√3)² + (0,5 · 6√2)² = 108 + 18 = 126 (cм²)
А ≈ 11,22 см
3х+5х+10х=360°
18х=360
х=20
3*20=60
если начертит чертеж получим треугольник, две стороны которого равны радиусу, угол у вершины равен60° основание ьреугольника равно 12 см, отпустим с вершины треугольника на основание высоту, так как у нас треугольник равнобедренный, то эта высота будет и медианой и биссектрисой. когда отпусти высоту получим прямоугольный треуголник 12:2= 6 см, напротив лежит угол 30°, сторона в 6 см является катетом, а гипотенуза радиус, значит радиус равен 12см. по правилу катет лежащий напротив 30° равен половине гипотенузы.