В правильной шестиугольной пирамиде SABCDEF стороны основания равны 2 см , высота 4 см . Найдите расстояние от точки А до плоскости SBC.
1. Координатный метод.
Привяжем систему координат к пирамиде так, что ось 0Z совпадет с высотой пирамиды SO, а ось 0Х - пройдет по диагонали FC. Тогда ось 0Y пойдет по высоте правильного треугольника АОВ и имеем точки:
Расстояние между точкой M(x;y;z) и плоскостью, заданной уравнением
Аx+By+Cz+D=0 находится по формуле:
d = |A·Mx+B·My+C·Mz+D|/(√(A²+B²+C²)). В нашем случае:
d = |-4√3+4√3+0-8√3|/(√(48+16+12)) = 8√3/√76 = (4√57)/19.
Геометрический метод.
Учитывая, что сторона основания ВС параллельна диагонали AD правильного шестиугольника, можем сказать, что расстояние между точкой А и плоскостью SBC равно расстоянию от точки О до этой плоскости.
Это расстояние - перпендикуляр из прямого угла треугольника SOH, где ОН - высота правильного треугольника ВОС, а SH - апофема боковой грани.
ОН = √3 (по формуле). SH = √(SO²+OH²) = √(16+3) = √19.
Высота из прямого угла равна h = a·b/c = 4·√3/√19 = (4√57)/19.
Диагонали ромба делят его на четыре равных прямоугольных треугольника, поэтому достаточно найти площадь одного из них (см. рисунок). В треугольнике AOB высота OH делит гипотенузу AB на отрезки, равные 1 и 4. Известно, что высота прямоугольного треугольника, опущенная на гипотенузу, равна среднему геометрическому длин отрезков, на которые она делит гипотенузу. (Этот факт, насколько мне известно, не нужно доказывать, но это легко сделать, так как треугольники AOH и BOH подобны, поэтому AH/OH=OH/BH). Тогда OH=√AH*BH=2. Зная длину гипотенузы и длину высоты, опущенной на неё, можно найти площадь треугольника, которая равна 1/2*(4+1)*2=5. А площадь ромба, то есть площадь 4 таких треугольников, равна 5*4=20.
Расстояние равно (4√57)/19 см.
Объяснение:
В правильной шестиугольной пирамиде SABCDEF стороны основания равны 2 см , высота 4 см . Найдите расстояние от точки А до плоскости SBC.
1. Координатный метод.
Привяжем систему координат к пирамиде так, что ось 0Z совпадет с высотой пирамиды SO, а ось 0Х - пройдет по диагонали FC. Тогда ось 0Y пойдет по высоте правильного треугольника АОВ и имеем точки:
A(-1;√3;0). S(0;0;4). C(2;0;0) и В(1;√3;0).
Уравнение плоскости SBC найдем по формуле:
|x-x1 x2-x1 x3-x1 |
|y-y1 y2-x1 y3-x1 | = 0.
|z-z1 z2-x1 z3-x1 |
Тогда, подставив координаты точек, получим определитель:
|x-0 2 1 |
|y-0 0 √3 | = 0. => x·| 0 √3 | - y·| 2 1 | + (z-4)·| 2 1 | = 0.
|z-4 -4 -4 | |-4 -4 | |-4 -4 | | 0 √3 |
(4√3)·x + 4y + 2√3·z - 8√3 = 0. - Уравнение с коэффициентами
А = 4√3, В = 4, С = 2√3 и D = -8√3.
Расстояние между точкой M(x;y;z) и плоскостью, заданной уравнением
Аx+By+Cz+D=0 находится по формуле:
d = |A·Mx+B·My+C·Mz+D|/(√(A²+B²+C²)). В нашем случае:
d = |-4√3+4√3+0-8√3|/(√(48+16+12)) = 8√3/√76 = (4√57)/19.
Геометрический метод.
Учитывая, что сторона основания ВС параллельна диагонали AD правильного шестиугольника, можем сказать, что расстояние между точкой А и плоскостью SBC равно расстоянию от точки О до этой плоскости.
Это расстояние - перпендикуляр из прямого угла треугольника SOH, где ОН - высота правильного треугольника ВОС, а SH - апофема боковой грани.
ОН = √3 (по формуле). SH = √(SO²+OH²) = √(16+3) = √19.
Высота из прямого угла равна h = a·b/c = 4·√3/√19 = (4√57)/19.