Пусть аи — смежные стороны параллелограмма, s — пло- щадь, а h, и һ. его высоты. Найдите: (а)) h2, если а = 18 см,
b = 30 см, h = 6 см, һ, > ht; б) h, если а = 10 см, b = 15 см,
h, = 6 см, h > h; в) h, и hу, если S = 54 см2, а = 4,5 см, b = 6 см.
ответ с чертежом
Sabcd = 1/2 d₁ * d₂ = 1/2 *3k *4k = 6k²
C другой стороны площадь ромба равна произведению стороны на высоту, то есть:
B Sabcd = AH * BC
OC = 1,5k BO = 2k
H Из ΔBOC по теореме Пифагора
BC² = (1,5k)² + (2k)² = 6,25k²
A O C BC = 2,5k
Sabcd = 3,6 * 2,5k = 9k
Следовательно
D 6k² = 9k
2k = 3
k = 1,5
Значит BC = 2,5 * 1,5 = 3,75
Pabcd = 4 * 3,75 = 15
Обозначим вершины трапеции АBCD AD=20 BC=12.
проведём диагональ АС и опустим высоту СН. Трапеция равнобокая DН=(АD-BC)/2=4
AC пересекает параллельные прямые АD и BC поэтому накрест лежащие углы равны . угол САD равен углу АСВ. Кроме того СА биссектриса угла ВСD . Поэтому CAD также равен углу АСD. рассмотрим треугольник АСD. В нем мы только что установили что угол А равен углу С. Поэтому АD равно DC = 20.
теперь рассмотрим треугольник СНD. он прямоугольный . угол Н прямой. DC=20 DH=4 по теореме Пифагора CH = √(20^2-4^2)= 8√6.
Площадь трапеции - средняя линия (АD+BC)/2= 16 умножить на найденную высоту СН=8√6 - равна 128√6