Пусть длины сторон треугольника ABC: AB = 5 см. АС 6 см, ВС = 7 см. Прямая, параллельная стороне АС, пересекает сторону АВ в точке Р, а сторону ВС в точке к. Найдите периметр треугольника РВК, если РК = 2 см.
В прямой треугольной призме высота призмы равна боковому ребру. Сечение, проведённое через боковое ребро и меньшую высоту основания является прямоугольником, так как призма прямая. Чтобы найти его площадь, необходимо найти меньшую высоту основания.
Зная три стороны треугольника в основании, можно вычислить его площадь по формуле Герона - S=√p(p-a)(p-b)(p-c), здесь a=10, b=17, c=21, p= (a+b+c)/2 =(10+17+21)/2=24, S=√24(24-10)(24-17)(24-21) = √24*14*7*3=7√24*6=84. Пусть меньшая высота основания равна h. Известно, что в треугольнике меньшая высота проведена к большей стороне, которая равна 21. Тогда площадь треугольника равна 1/2*21*h, откуда, зная, что площадь равна 84, можно найти h - 1/2*21*h=84, h=8.
Таким образом, соседние стороны сечения равны 8 и 18, тогда его площадь равна 8*18=144 см².
Зная три стороны треугольника в основании, можно вычислить его площадь по формуле Герона - S=√p(p-a)(p-b)(p-c), здесь a=10, b=17, c=21, p= (a+b+c)/2 =(10+17+21)/2=24, S=√24(24-10)(24-17)(24-21) = √24*14*7*3=7√24*6=84. Пусть меньшая высота основания равна h. Известно, что в треугольнике меньшая высота проведена к большей стороне, которая равна 21. Тогда площадь треугольника равна 1/2*21*h, откуда, зная, что площадь равна 84, можно найти h - 1/2*21*h=84, h=8.
Таким образом, соседние стороны сечения равны 8 и 18, тогда его площадь равна 8*18=144 см².
знайдемо середини диагоналей читырехугольника
середина диагоналей aс: x=(-3+(-1))/2=-2; y=(-2+6)/2=2
середина диагоналей bd: x=(2+(-6))/2=-2; y=(1+3)/2=2
середины диагоналей данного читерехугольника сокращаються, значить паралелограмом
по формуле знаем что довжиния сторн читерехугольника abcd
ab=корень(())^2+())^2)=корень(25+9)=корень(34)
bc=-2)^2+(6-1)^2)=корень(9+25)=корень(34)
cd=))^2+(3-6)^2)=корень(25+9)=корень(34)
ad=))^2+())^2)=корень(9+25)=корень(34)
сторони даного паралелограма равен, тому ромбом.
по формулі відстані знайдемо довжини діагоналей чотирикутника abcd
ac=корі))^2+())^2)=корінь(4+64)=корінь(68)
bd=корі-2)^2+(3-1)^2)=корінь(64+4)=корінь(68)
даний чотирикутник(паралелограм) є ромбом і прямокутником, тому він квадрат