Сделаем это задание за Теоремой про равность треугольников
Мы знаем что ab = ad тогда треугольник abd - равнобедренный треугольник и также треугольник bdc равнобедренный треугольник
Тогда за третей ознакой равенства:
1. AB = AD
2. BC = CD
3. сторона AC - общая.
Значит, ∠BAO = ∠DAO
Тогда За 1 признаку докажем что эти треугольники равны, так как мы нашли что углы равны
( Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны. )
AB = AD AO - общая
∠BAO = ∠DAO за 3 ознакой. С этого ΔABO = ΔADO
Из равенства ΔABO и ΔADO вытекает равенство углов ∠BOA и ∠DOA. поэтому ∠BOA = ∠DOA = 90°. Следовательно AC⊥BD
10 см
Объяснение:
см
Пошаговое объяснение:
ΔАВС,
АС = 12 см,
ВС = 15 см,
АВ = 18 см.
В треугольнике против больше стороны лежит больший угол, поэтому биссектриса СК проведена из вершины С.
Биссектриса делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам:
\dfrac{c}{d}=\dfrac{b}{a}dc=ab
d = 18 - c
\dfrac{c}{18-c}=\dfrac{12}{15}=\dfrac{4}{5}18−cc=1512=54
5c = 4(18 - c)
5c = 72 - 4c
9c = 72
c = 8 см
d = 10 см
l^{2}=ab-cd=12\cdot 15-8\cdot 10=180-80=100l2=ab−cd=12⋅15−8⋅10=180−80=100
l=10l=10 см
Доказано // Удачи ;D
Объяснение:
Сделаем это задание за Теоремой про равность треугольников
Мы знаем что ab = ad тогда треугольник abd - равнобедренный треугольник и также треугольник bdc равнобедренный треугольник
Тогда за третей ознакой равенства:
1. AB = AD
2. BC = CD
3. сторона AC - общая.
Значит, ∠BAO = ∠DAO
Тогда За 1 признаку докажем что эти треугольники равны, так как мы нашли что углы равны
( Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны. )
AB = AD AO - общая
∠BAO = ∠DAO за 3 ознакой. С этого ΔABO = ΔADO
Из равенства ΔABO и ΔADO вытекает равенство углов ∠BOA и ∠DOA. поэтому ∠BOA = ∠DOA = 90°. Следовательно AC⊥BD
И этим мы доказали что O - середина BD
Доказано // Удачи ;D