Різниця основ прямокутної трапеції дорівнює 18 см. Обчисліть площу трапеції, якщо менша діагональ трапеції дорівнює 26 см, а бічні сторони відносяться як 4 : 5.
2числа нашла 1)628750=шепнул 2)682750= шепнул ответ: 1) 3143750=крикнул 2)3413750=крикнул решение можно так попробовать: 1. л=0 или 5 т.к. сумма других пяти одинаковых слагаемых (цифр) не будет оканчиваться на ту же цифру 2. а) если л=0 , то у=5 (так же как 1 пункт) б) если л=5, то у*5=у+1 такого быть не может итак, в конце 50 (если при умножениипоследних двух букв получаются те же буквы,то это по любому 50) 3. н не может равняться 1 , т.к. 5 занята буква у, значит н=7 (7*5 +2 = последняя цифра 7) далее к не может быть меньше 3 ( это расскажешь) , а т.к. тройка была в уме , то к ровно 3 4. дальше понятно ш=6 ( иначе ответ не с 3 будет начинаться) 5 к=3 ,то п*5 должно оканчиваться на 0 => р=8 или 2
На сторонах угла∡ABC точки A и C находятся в равных расстояниях от вершины угла BA=BC. Через эти точки к сторонам угла проведены перпендикуляры AE⊥BA CD⊥BC.
1. Чтобы доказать равенство ΔAFD и ΔCFE, докажем, что ΔBAE и ΔBCD, по второму признаку равенства треугольников:
BA=BC
∡BAF=∡BCF=90°
∡ABC — общий.
В этих треугольниках равны все соответсвующие эелементы, в том числе BD=BE, ∡D=∡E.
Если BD=BE и BA=BC, то BD−BA=BE−BC, то есть AD=CE.
Очевидно равенство ΔAFD и ΔCFE также доказываем по второму признаку равенства треугольников:
На сторонах угла∡ABC точки A и C находятся в равных расстояниях от вершины угла BA=BC. Через эти точки к сторонам угла проведены перпендикуляры AE⊥BA CD⊥BC.
1. Чтобы доказать равенство ΔAFD и ΔCFE, докажем, что ΔBAE и ΔBCD, по второму признаку равенства треугольников:
BA=BC
∡BAF=∡BCF=90°
∡ABC — общий.
В этих треугольниках равны все соответсвующие эелементы, в том числе BD=BE, ∡D=∡E.
Если BD=BE и BA=BC, то BD−BA=BE−BC, то есть AD=CE.
Очевидно равенство ΔAFD и ΔCFE также доказываем по второму признаку равенства треугольников:
AD=CE
∡DAF=∡ECF=90°
∡D=∡
Подробнее - на -
Объяснение: