В правильной шестиугольной пирамиде SABCDEF стороны основания равны 2 см , высота 4 см . Найдите расстояние от точки А до плоскости SBC.
1. Координатный метод.
Привяжем систему координат к пирамиде так, что ось 0Z совпадет с высотой пирамиды SO, а ось 0Х - пройдет по диагонали FC. Тогда ось 0Y пойдет по высоте правильного треугольника АОВ и имеем точки:
Расстояние между точкой M(x;y;z) и плоскостью, заданной уравнением
Аx+By+Cz+D=0 находится по формуле:
d = |A·Mx+B·My+C·Mz+D|/(√(A²+B²+C²)). В нашем случае:
d = |-4√3+4√3+0-8√3|/(√(48+16+12)) = 8√3/√76 = (4√57)/19.
Геометрический метод.
Учитывая, что сторона основания ВС параллельна диагонали AD правильного шестиугольника, можем сказать, что расстояние между точкой А и плоскостью SBC равно расстоянию от точки О до этой плоскости.
Это расстояние - перпендикуляр из прямого угла треугольника SOH, где ОН - высота правильного треугольника ВОС, а SH - апофема боковой грани.
ОН = √3 (по формуле). SH = √(SO²+OH²) = √(16+3) = √19.
Высота из прямого угла равна h = a·b/c = 4·√3/√19 = (4√57)/19.
1. ΔАВС и ΔАDС равны по второму признаку равенства треугольников. в них АС- общая. а углы, прилежащие к этой стороне, равны по условию. Поэтому АВ=DС, ВС=АD, значит, по признаку параллелограмма четырехугольник АВСD - параллелограмм. Доказано.
5. BD- общая для ΔАВD и ΔDСВ, стороны ВС и АD -равны по условию, углы между ВD и ВС и ВD и DА равны по условию. значит, ΔАВD и ΔDСВ равны по первому признаку равенства треугольников. а ВС и АD равны и параллельны, т.к. ∠СВD=∠АDВ, а это внутренние накрест лежащие при ВС и АD и секущей ВD, по признаку четырехугольник АВСD - параллелограмм. Доказано.
7. Из равенства этих треугольников вытекает равенство сторон АВ и С D , кроме того, углы ВАО и СОD равны, но это внутренние накрест лежащие при прямых АВ и СD, секущей АС, значит, прямые АВ ║ СD.
По признаку четырехугольник АВСD - параллелограмм. Доказано.
Расстояние равно (4√57)/19 см.
Объяснение:
В правильной шестиугольной пирамиде SABCDEF стороны основания равны 2 см , высота 4 см . Найдите расстояние от точки А до плоскости SBC.
1. Координатный метод.
Привяжем систему координат к пирамиде так, что ось 0Z совпадет с высотой пирамиды SO, а ось 0Х - пройдет по диагонали FC. Тогда ось 0Y пойдет по высоте правильного треугольника АОВ и имеем точки:
A(-1;√3;0). S(0;0;4). C(2;0;0) и В(1;√3;0).
Уравнение плоскости SBC найдем по формуле:
|x-x1 x2-x1 x3-x1 |
|y-y1 y2-x1 y3-x1 | = 0.
|z-z1 z2-x1 z3-x1 |
Тогда, подставив координаты точек, получим определитель:
|x-0 2 1 |
|y-0 0 √3 | = 0. => x·| 0 √3 | - y·| 2 1 | + (z-4)·| 2 1 | = 0.
|z-4 -4 -4 | |-4 -4 | |-4 -4 | | 0 √3 |
(4√3)·x + 4y + 2√3·z - 8√3 = 0. - Уравнение с коэффициентами
А = 4√3, В = 4, С = 2√3 и D = -8√3.
Расстояние между точкой M(x;y;z) и плоскостью, заданной уравнением
Аx+By+Cz+D=0 находится по формуле:
d = |A·Mx+B·My+C·Mz+D|/(√(A²+B²+C²)). В нашем случае:
d = |-4√3+4√3+0-8√3|/(√(48+16+12)) = 8√3/√76 = (4√57)/19.
Геометрический метод.
Учитывая, что сторона основания ВС параллельна диагонали AD правильного шестиугольника, можем сказать, что расстояние между точкой А и плоскостью SBC равно расстоянию от точки О до этой плоскости.
Это расстояние - перпендикуляр из прямого угла треугольника SOH, где ОН - высота правильного треугольника ВОС, а SH - апофема боковой грани.
ОН = √3 (по формуле). SH = √(SO²+OH²) = √(16+3) = √19.
Высота из прямого угла равна h = a·b/c = 4·√3/√19 = (4√57)/19.
1. ΔАВС и ΔАDС равны по второму признаку равенства треугольников. в них АС- общая. а углы, прилежащие к этой стороне, равны по условию. Поэтому АВ=DС, ВС=АD, значит, по признаку параллелограмма четырехугольник АВСD - параллелограмм. Доказано.
5. BD- общая для ΔАВD и ΔDСВ, стороны ВС и АD -равны по условию, углы между ВD и ВС и ВD и DА равны по условию. значит, ΔАВD и ΔDСВ равны по первому признаку равенства треугольников. а ВС и АD равны и параллельны, т.к. ∠СВD=∠АDВ, а это внутренние накрест лежащие при ВС и АD и секущей ВD, по признаку четырехугольник АВСD - параллелограмм. Доказано.
7. Из равенства этих треугольников вытекает равенство сторон АВ и С D , кроме того, углы ВАО и СОD равны, но это внутренние накрест лежащие при прямых АВ и СD, секущей АС, значит, прямые АВ ║ СD.
По признаку четырехугольник АВСD - параллелограмм. Доказано.