Во-первых, трапеция которая вписана в окружность является равнобедренной, поскольку: 1) сумма противоположных углов четырехугольника равна 180°; 2) сумма односторонних углов трапеции равна 180°; Значит углы при основании равны.
Пусть радиус окружности равен R; При этом TK = TN = R; По теореме синусов: Поскольку LT = KT как радиусы, треугольник LTK - равнобедренный и ∠KLT = ∠LKT = (180°-2α)/2 = 90-α; По теореме синусов: ; С одной стороны , с другой , откуда ; 2R = 5; Опустим перпендикуляры на основание с точек L и M; Тогда
Пусть радиус окружности равен R; При этом TK = TN = R; По теореме синусов:
Поскольку LT = KT как радиусы, треугольник LTK - равнобедренный и ∠KLT = ∠LKT = (180°-2α)/2 = 90-α; По теореме синусов: ; С одной стороны , с другой , откуда ; 2R = 5; Опустим перпендикуляры на основание с точек L и M; Тогда
Найти: проекцию меньшего катета на гипотенузу.
Решение:
--- 1 ---
Гипотенуза по т. Пифагора
√(7² + 24²) = √(49 + 576) = √625 = 25
--- 2 ---
Площадь треугольника АСД через катеты
S = 1/2*7*24 = 7*12 = 84 см²
Площадь треугольника АСД через гипотенузу и высоту
S = 1/2*25*ВД = 25/2*ВД
Приравниваем
25/2*ВД = 84
ВД = 168/25
--- 3 ---
В ΔАВД по т. Пифагора
7² = (168/25)² + АВ²
АВ² = (7*25/25)² - (168/25)² = (175/25)² - (168/25)² = (175 - 168)(175 + 168)/25² = 7*343/25² = 49²/25²
AB = 49/25
Всё :)