Радиус окружности, вписанной в правильный треугольник, равен 2 см.
а) Найдите длину стороны правильного треугольника.
b) Найдите радиус окружности, описанной около этого же треугольника.
c) Найдите периметр данного правильного треугольника.
d) Найдите площадь данного правильного треугольника
Сечение цилиндра проходит через хорду АВ в основании, отстоящую от центра окружности на 2 см. ОМ=2 см. АМ=ВМ, М∈АВ, АО=ВО=R.
В прямоугольном тр-ке АОМ АМ=√(АО²-ОМ²)=√(R²-4).
АВ=2АМ=2√(R²-4).
По условию АВ=Н. Объединим оба полученные уравнения высоты.
4√3/R=2√(R²-4), возведём всё в квадрат,
48/R²=4(R²-4),
12=R²(R²-4),
R⁴-4R²-12=0,
R₁²=-2, отрицательное значение не подходит.
R₂²=6.
Н=2√(6-4)=2√2 см.
Площадь искомого сечения равна: S=H²=8 см² - это ответ.
Его можно рассматривать, как 2 соединённых треугольника вершинами в разные стороны.
Тогда линия, соединяющая 2 соседние стороны ромба - это средняя линия треугольника и она параллельна основанию, то есть диагонали.
Аналогично, рассматривая второй треугольник, у него тоже средняя линия параллельна основанию и паралленльна первой линии.
Теперь можно перейти к другой диагонали и получит аналогичный результат - линии, соединяющие середины ромба, параллельны между собой и диагоналям.
То есть, между ними углы по 90 градусов - это и есть доказательство того, что если последовательно соединить середины сторон ромба, то получится прямоугольник.