Радиус основания цилиндра равен 25 а образующая равна 9 сечение параллельное оси цилиндра удалено от неё на расстояние равное 24 найдите площадь сечения
Из условия нам известно, что ∠DOC равен пяти углам COB.
Если посмотреть на чертеж, то мы увидим, что ∠DOC и ∠COB смежные, а следовательно, их сумма равна 180°. Для нахождения углов DOC и COB составим линейное уравнение:
Пусть x - ∠DOC, тогда ∠COB - 5x. (угол COB равен 5x, т.к. он в 5 раз больше угла DOC)
ABCD - параллелограмм
\begin{gathered}\overrightarrow{AD} = \overrightarrow a \\ \\ \overrightarrow{AB} = \overrightarrow b \\ \\ K \in BC, ~L \in ADBK:KC=3:4, ~AL:LD=4:3\end{gathered}
AD
=
a
AB
=
b
K∈BC, L∈AD
BK:KC=3:4, AL:LD=4:3
Выразить вектор \overrightarrow {KL}
KL
через вектора \overrightarrow a, ~\overrightarrow b
a
,
b
\displaystyle \overrightarrow{KL} =\overrightarrow{KB} +\overrightarrow{BA}+ \overrightarrow {AL}
KL
=
KB
+
BA
+
AL
(по правилу суммы нескольких векторов)
Рассмотрим параллелограмм ABCD
AD = BC по свойству параллелограмма
AD ║ BC - по определению параллелограмма
\Rightarrow \overrightarrow{BC} = \overrightarrow{AD} = \overrightarrow a⇒
BC
=
AD
=
a
\begin{gathered}\displaystyle \overrightarrow {KB} = \frac{3}{7}\overrightarrow{CB} = -\frac{3}{7}\overrightarrow{BC} = -\frac{3}{7}\overrightarrow a \\ \\ \overrightarrow {BA} = -\overrightarrow {AB} = -\overrightarrow b \\ \\ \overrightarrow {AL} = \frac{4}{7}\overrightarrow{AD} = \frac{4}{7}\overrightarrow{a}\end{gathered}
KB
=
7
3
CB
=−
7
3
BC
=−
7
3
a
BA
=−
AB
=−
b
AL
=
7
4
AD
=
7
4
a
\displaystyle \overrightarrow{KL} =\overrightarrow{KB} +\overrightarrow{BA}+ \overrightarrow {AL} = -\frac 3 7 \overrightarrow a - \overrightarrow b + \frac 4 7 \overrightarrow a = \frac 1 7 \overrightarrow a - \overrightarrow b
KL
=
KB
+
BA
+
AL
=−
7
3
a
−
b
+
7
4
a
=
7
1
a
−
b
\displaystyle \text{Answer}: \boxed{\overrightarrow {KL} = \frac 1 7 \overrightarrow a - \overrightarrow b}Answer:
KL
=
7
1
a
−
b
Объяснение:
Из условия нам известно, что ∠DOC равен пяти углам COB.
Если посмотреть на чертеж, то мы увидим, что ∠DOC и ∠COB смежные, а следовательно, их сумма равна 180°. Для нахождения углов DOC и COB составим линейное уравнение:
Пусть x - ∠DOC, тогда ∠COB - 5x. (угол COB равен 5x, т.к. он в 5 раз больше угла DOC)
Получаем:
x + 5x = 180°
6x = 180°
x = 30° (Это мы нашли x, то есть ∠DOC)
∠COB = 30° * 5 = 150°.
Ну а дальше - дело техники.
∠COD = ∠BOA = 150°(все вертикальные углы равны)
∠BOC = ∠AOD = 30°(все вертикальные углы равны).
Задача решена.