Две из трёх сторон параллелепипеда образуют квадрат вокруг круглого сечения цилиндра и каждая из них равна диаметру цилиндра, т.е. 4.
Третья сторона равна длине цилиндра, обозначим её как х.
Объём параллелепипеда равен произведению его сторон: V=4*4*x x=V/16=20/16=5/4
Объём цилиндра равен площади сечения на длину V=Pкруга*x Рк=pi*R^2=3.14*4 V=3.14*4*5/4=15.7 - 2ответ
Площадь поверхности цилиндра равна площадь сечения + площадь боковой поверхности: Рц=Рк+Рб Рб=с*х [длина окружности на длину цилиндра] с=pi*D=3.14*4=12.56 Pб=12.56*5/4=15.7 Рц=3.14*4+15.7=28.26 - 1ответ
1. Касательные проведнные с одной точки равны между собой, поэтому
AC = AB = 12 см.
По теореме Пифагора
AO=корень(CO^+AC^2)=корень(9^2+12^2)=15 см
ответ: 12 см, 15 см
2. Извини, но незнаю
3. Хорды MN и PK пересекаются в точке E так, что ME = 12 см, NE = 3 см, PE = KE. Найдите PK.
По свойству хорд
ME*NE=PE*KE
Пусть PE = KE=х см
Тогда x^2=12*3=36
x>0, поєтому х=6 см
PK=PE+KE=6см+6см=12 см
ответ:12 см
4.Треугольник ОАВ равнобедренный, ОА=ОВ=16 см (радиусы);
∠А=∠В=30° - по условию;
ОН - высота ОАВ, равна 16/2=8 см (катет против угла 30°);
АВ=2*АН=2*√(16²-8²)=16√3 см.
Треугольник СОВ равнобедренный, ОС=ОВ=16 см (радиусы);
∠С=∠В=45° ⇒ ∠О=90° - прямоугольный ⇒ СВ=√(16²+16²)=16√2 см.
АВ=16√3 см;
ВС=16√2 см.
Третья сторона равна длине цилиндра, обозначим её как х.
Объём параллелепипеда равен произведению его сторон:
V=4*4*x
x=V/16=20/16=5/4
Объём цилиндра равен площади сечения на длину
V=Pкруга*x
Рк=pi*R^2=3.14*4
V=3.14*4*5/4=15.7 - 2ответ
Площадь поверхности цилиндра равна площадь сечения + площадь боковой поверхности:
Рц=Рк+Рб
Рб=с*х [длина окружности на длину цилиндра]
с=pi*D=3.14*4=12.56
Pб=12.56*5/4=15.7
Рц=3.14*4+15.7=28.26 - 1ответ
Всё!