Радиусы двух концентрических окружностей, относятся как 4:11. Найдите диаметры этих окружностей, если ширина кольца, образованного ими, равна 7 см ПРЯ СЕЙЧАС
Опускаем Высоту СН на АВ. СН = sin В * 3 корня из 2 = sin 30 * 3корня из 2 = 0,5*3 корня из 2 = 1,5 корня из 2 НВ в квадрате = (3 корня из 2) в квадрате - (1,5 корня из 2)в квадрате = 9*2 - 9/2= 13,5 НВ = корень из 13,5 = 3 корня из 1,5 АН = СН= 1,5 корня из 2 так как треугольник равнобедренный (углы при основании АС равны 45). АВ = АН + НВ = 1,5 корня из 2 + 3 корня из 1,5 АС = корень из (АН в квадрате + СН в квадрате) = корень из (4,5+4,5)=3
ОТВЕТ угол А = 45 АВ= 1,5 корня из 2 + 3 корня из 1,5 АС=3
Так как PS=RS, то треугольник PSR с основанием PR боковыми сторонами PS и RS является равнобедренным. Следовательно углы пр основании равны, то есть углы ∠SPR и ∠SRP равны. ==> ∠SPR = ∠SRP= 1,5*∠PSR Сумма углов в треугольнике равна 180°. Тогда ∠SPR + ∠SRP + ∠PSR=180° Подставляем в выражение известные нам значения: (1,5*∠PSR)+(1,5*∠PSR)+∠PSR =180° Упрощаем: 4 * ∠PSR= 180° ∠PSR = 45° Находим углы при основании, то есть ∠SPR и ∠SRP, зная что оба угла равны 1,5*∠PSR ∠SPR = ∠SRP= 1,5 * 45°=67,5° Делаем проверку, того что все углы в треугольнике в сумме дают 180° 67,5° + 67,5° + 45°=180° Всё верно. ответ: ∠SPR = 67,5° , ∠SRP=67,5° , ∠PSR = 45°
СН = sin В * 3 корня из 2 = sin 30 * 3корня из 2 = 0,5*3 корня из 2 = 1,5 корня из 2
НВ в квадрате = (3 корня из 2) в квадрате - (1,5 корня из 2)в квадрате = 9*2 - 9/2= 13,5
НВ = корень из 13,5 = 3 корня из 1,5
АН = СН= 1,5 корня из 2 так как треугольник равнобедренный (углы при основании АС равны 45).
АВ = АН + НВ = 1,5 корня из 2 + 3 корня из 1,5
АС = корень из (АН в квадрате + СН в квадрате) = корень из (4,5+4,5)=3
ОТВЕТ угол А = 45
АВ= 1,5 корня из 2 + 3 корня из 1,5
АС=3
Следовательно углы пр основании равны, то есть углы ∠SPR и ∠SRP равны. ==> ∠SPR = ∠SRP= 1,5*∠PSR
Сумма углов в треугольнике равна 180°. Тогда ∠SPR + ∠SRP + ∠PSR=180°
Подставляем в выражение известные нам значения:
(1,5*∠PSR)+(1,5*∠PSR)+∠PSR =180°
Упрощаем:
4 * ∠PSR= 180°
∠PSR = 45°
Находим углы при основании, то есть ∠SPR и ∠SRP, зная что оба угла равны 1,5*∠PSR
∠SPR = ∠SRP= 1,5 * 45°=67,5°
Делаем проверку, того что все углы в треугольнике в сумме дают 180°
67,5° + 67,5° + 45°=180°
Всё верно.
ответ: ∠SPR = 67,5° , ∠SRP=67,5° , ∠PSR = 45°