Площадь поверхности шара равна четырем его радиусам в квадрате умноженным на число π.
S = 4 * пи * R^2
то есть площадь поверхности первого равна
S1= 4*3,14*19,5^2 = 4 775,94 см^2
второго
S2=4*3,14*10,4^2 = 1 358,49 см^2
Сложим их площади
S=S1+S2= 6134,42 см^2
теперь нам нужно найти радиус
выразим из этой формулы S = 4 * пи * R^2 радиус
Радиус этого шара вычисляется так:
√(S/(4π)) = r
√(6134,42/(4π)) = r
√(1533,605/(π)) = r
√(488,409) = r
R = 22,09 см
радиус равен 22,09 см
Площадь поверхности шара равна четырем его радиусам в квадрате умноженным на число π.
S = 4 * пи * R^2
то есть площадь поверхности первого равна
S1= 4*3,14*19,5^2 = 4 775,94 см^2
второго
S2=4*3,14*10,4^2 = 1 358,49 см^2
Сложим их площади
S=S1+S2= 6134,42 см^2
теперь нам нужно найти радиус
выразим из этой формулы S = 4 * пи * R^2 радиус
Радиус этого шара вычисляется так:
√(S/(4π)) = r
√(6134,42/(4π)) = r
√(1533,605/(π)) = r
√(488,409) = r
R = 22,09 см
радиус равен 22,09 см