Рассматривается треугольная пирамида SABC такая, что все плоские углы при вершине S прямые, SA =SB=5, SC=3; K-середина ребра AC 1)Найдите тангенс угла наклона прямой BK К плоскости SAC
2)найдите расстояние от точки С до прямой АВ
3) найдите площадь полной поверхности пирамиды
1)т.к. окружность вписана в четырёхугольник, то суммы противоположных сторон равны, т.е. ав+cd=bc+ad=6+24=30 (см)
т.к. ав=cd, то ав=cd =30: 2=15 (см).
2) из δ авв1-прям.: ав=15, ав1=(ad-bc)/2=(24-6): 2=9(cм), тогда
вв1= √(ав²-ав1²)=√15²-9²=√144=12(см).
3) sтрап.= ½· (ad+bc)·bb1=½·30·12=180 (см²)
4) радиус ,вписанной в трапецию ,окружности равен половине её высоты ,
т.е. r=½·bb1=6(см).
ответ: 6 см; 180 см².
A1. Две прямые на плоскости называются параллельными, если они:
4) не пересекаются
А2. Один из признаков параллельности двух прямых гласит:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А3. Выберите утверждение, являющееся аксиомой параллельных прямых:
Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной
А4. Если две параллельные прямые пересечены секущей, то:
Соответственные углы равны
А5. Если прямая перпендикулярна одной из двух параллельных прямых, то:
Она перпендикулярна и другой
А6. Всякая теорема состоит из нескольких частей:
Условия и заключения
А7. При пересечении двух прямых секущей образуются углы, имеющие специальные названия:
Накрест лежащие, соответственные, односторонние
А8. Аксиома – это:
Положение геометрии, не требующее доказательства
А9. Выберите утверждение, которое является признаком параллельности прямых:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А10. Если прямая не пересекает одну из двух параллельных прямых, то:
Другую прямую она тоже не пересекает
или
С другой прямой она совпадает