В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
9999Ksenya999
9999Ksenya999
07.04.2020 01:26 •  Геометрия

Расстояние от центра шара с диаметром 40 до точки M на касательной плоскости равно 25.Найдите длину проекции отрезка OM на касательную плоскость


Расстояние от центра шара с диаметром 40 до точки M на касательной плоскости равно 25.Найдите длину

Показать ответ
Ответ:
lapysh1995
lapysh1995
20.09.2021 13:50

a) Параллельные отсекают от угла подобные треугольники.

Отношение площадей подобных фигур равно квадрату коэффициента подобия.

MBN~ABC, MN/AC=1/2, S(MBN)= 1/4 S(ABC)

EBF~ABC, EB/AB=1/3, S(EBF)= 1/9 S(ABC)

S(MEFN) =S(MBN)-S(EBF) =(1/4 -1/9)S(ABC) =5/36 S(ABC)

б) Площади треугольников с равным углом относятся как произведения прилежащих сторон.

S(DBK)/S(ABC) =DB*BK/AB*BC =DB/AB *BK/BC =1/3 *4/7 =4/21

S(KCM)/S(BCA) =KC*CM/BC*CA =3/7 *1/4 =3/28

S(MAD)/S(CAB) =MA*AD/CA*AB =3/4 *2/3 =1/2

S(DKM) =S(ABC)-S(DBK)-S(KCM)-S(MAD) =

(1 -4/21 -3/28 -1/2)S(ABC) =(84-16-9-42)/84 *S(ABC) =17/84 S(ABC)

0,0(0 оценок)
Ответ:
nastyyya4
nastyyya4
06.09.2021 18:33
Вот пришло в голову решение :) Так-то задачка ерундовая :)
Я продлеваю перпендикуляры HK и HM за точку H до пересечения с BA в точке A1 и BC в точке C1 (ну, точки лежат на продолжениях... из за того, что ∠ABC острый, эти точки есть и лежат где положено :) )
Для треугольника A1BC1 H - точка пересечения высот (ну двух-то точно :) - A1M и C1K), поэтому A1C1 перпендикулярно BH, и, следовательно, параллельно AC;
то есть ∠BAC = ∠BA1C;
Точки K и M лежат на окружности, построенной на A1C1, как на диаметре, поэтому
∠BA1C + ∠KMC = 180°; как противоположные углы вписанного четырехугольника. Или, что же самое, ∠BA1C = ∠BMK;
следовательно ∠BAC = ∠BMK; 
и треугольники ABC и BMK имеют равные углы. То есть, подобны.

Следствие, которое важнее задачи :) Четырехугольник AKMC - вписанный. То есть через эти 4 точки можно провести окружность.

Дополнение. Тривиальный решения тут такой.
∠KHB = ∠A; ∠MHB = ∠C;
BK =  BH*sin(A) = BC*sin(C)*sin(A);
BM = BH*sin(C) = BA*sin(A)*sin(C);
То есть у треугольников ABC и MBK угол B общий, и стороны общего угла пропорциональны BM/BA = BK/BC = sin(A)*sin(B); значит треугольники подобны.
коэффициент подобия sin(A)*sin(C), что тоже полезное следствие.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота