1. Пусть a,H - основание и высота основного треугольника.
m,h - основание и высота отсеченного треугольника.
Так как m - средняя линия, то:
m = a/2, h = H/2
Значит площадь отсеченного треугольника - в 4 раза меньше исходного.
ответ: s/S = 1/4.
2. ABCD - равнобедренная трапеция (около нее можно описать окружность)
т.О - середина AD (большего основания). AD = 2R - диаметр окр-ти. ВС = R - радиус окр-ти.
Тогда радиусы ОВ и ОС разбивают трапецию на три правильных треугольника со стороной R.
Значит углы трапеции: 60; 60; 120; 120 гр.
3. Рисуем тр. АВС так, что Угол В - наибольший ( тупой). Проведем биссектрису ВК и высоту ВМ из вершины этого угла.
Пусть Угол А - наименьший, А = х.
Тогда В = 4х, С = 180 - 5х.
В треугольнике ВКМ угол ВКМ = 90 - 12 = 78 гр. Он является внешним к тр-ку АВК. Значит он равен сумме внутренних углов А и В/2.
х + 2х = 78
3х = 78
х = 26, 4х = 104, 180 - 5х = 50
ответ: 26, 50, 104 гр.
4. Рисуем две касающиеся окружности: левая (меньшая) О1 и правая(большая) О2. Проводим прямую через точки О1 и О2. Крайняя левая точка пересечения с окр О1 пометим как А. Проводим из точки А касательную АВ к окр. О2. В - точка касания.
1)Пусть х = 1: Пусть х = 4:
f(1) + 2f(4) = -4 f(4) + 2f(1) = 11/4
Решаем систему уравнений:
f(4) = 11/4 - 2f(1)
f(1) -4f(1) + 22/4 = -4 3f(1) = 38/4 f(1) = 19/6
ответ: 19/6.
2) При x<5:
y = -x^2 + 5x -1
парабола с вершиной в т( 2,5; 5,25) ветвями вниз.
При x>=5:
y = x^2 - 5x -1
Парабола с вершиной в т.(2,5; -7,25) ветвями вверх(рисуем кусок правой ветви)
Проверяем значения на краях отрезка и сравниваем их с вершиной параболы, которая тоже входит в указанный отрезок.
У(-2) = -4-10-1 = -15
у(2,5) = 5,25
у(6) = 5
Итак у прин [-15; 5,25]
1. Пусть a,H - основание и высота основного треугольника.
m,h - основание и высота отсеченного треугольника.
Так как m - средняя линия, то:
m = a/2, h = H/2
Значит площадь отсеченного треугольника - в 4 раза меньше исходного.
ответ: s/S = 1/4.
2. ABCD - равнобедренная трапеция (около нее можно описать окружность)
т.О - середина AD (большего основания). AD = 2R - диаметр окр-ти. ВС = R - радиус окр-ти.
Тогда радиусы ОВ и ОС разбивают трапецию на три правильных треугольника со стороной R.
Значит углы трапеции: 60; 60; 120; 120 гр.
3. Рисуем тр. АВС так, что Угол В - наибольший ( тупой). Проведем биссектрису ВК и высоту ВМ из вершины этого угла.
Пусть Угол А - наименьший, А = х.
Тогда В = 4х, С = 180 - 5х.
В треугольнике ВКМ угол ВКМ = 90 - 12 = 78 гр. Он является внешним к тр-ку АВК. Значит он равен сумме внутренних углов А и В/2.
х + 2х = 78
3х = 78
х = 26, 4х = 104, 180 - 5х = 50
ответ: 26, 50, 104 гр.
4. Рисуем две касающиеся окружности: левая (меньшая) О1 и правая(большая) О2. Проводим прямую через точки О1 и О2. Крайняя левая точка пересечения с окр О1 пометим как А. Проводим из точки А касательную АВ к окр. О2. В - точка касания.
Рассмотрим прям. тр-ик АВО2. В нем:
АО2 = 2R1 + R2 = 10 + R2, (гипотенуза).
О2В = R2 - катет против угла в 30 гр.
Значит 2R2 = 10 + R2
R2 = 10, 2R2 = 20
ответ: 20