Теорема: если прямая перпендикулярна радиусу и проходит через конец радиуса, лежащий на окружности, то она является касательной к окружности.
Дано: ω (О; ОА), прямая а, а⊥ОА, А∈а. Доказать: а - касательная к окружности. Доказательство: Радиус перпендикулярен прямой а. Перпендикуляр - это кратчайшее расстояние от центра окружности до прямой. Значит, расстояние от центра до любой другой точки прямой будет больше, чем до точки А, и значит все остальные точки прямой лежат вне окружности. Итак, прямая а и окружность имеют только одну общую точку А. Значит, прямая а - касательная к окружности.
Опустим с вершины тупого угла высоту и диагональ (она и будет меньшей), т. к. высота по условию делит сторону ромба на 2 равные части.Зная, что все стороны ромба равны, то получим 2 маленьких (равных между собой и 1 большой трегольники.маленькие треугольники равны между собой т.к. высота является общей стороной, и углы между катетами равны 90 градусов, следовательно меньшая диагональ равна гиппотенузе 2 маленького треуг, которая в свою очередь явл стороной ромба и по дано получается что сторона ромба равна 3,5 смпериметр ромба равен 4*а=4*3,5=14.Если смортеть на 2 больших треугольника (не обращая внимание на высоту), то видно что все стороны равны т.к. мы выяснили что меньшая диагональ равна стороне. из этого следует что треугольник равносторонний углы которого равны 60 градусов.следовательно меньшие углы ромба равны 60 градусам, а большие найдем по формуле:(360-(2*60))/2=120 градусовответ углы ромба равны: 60, 120, 60,120. периметр равен 14 см
Дано: ω (О; ОА), прямая а, а⊥ОА, А∈а.
Доказать: а - касательная к окружности.
Доказательство:
Радиус перпендикулярен прямой а. Перпендикуляр - это кратчайшее расстояние от центра окружности до прямой. Значит, расстояние от центра до любой другой точки прямой будет больше, чем до точки А, и значит все остальные точки прямой лежат вне окружности.
Итак, прямая а и окружность имеют только одну общую точку А. Значит, прямая а - касательная к окружности.