Ребро правильного тетраедра ABCD дорівнює 24 см, M ∈ BD, BM:MD=3:1. Знайдіть площу перерізу тетраедра площиною, яка проходить через точку M паралельно площині (ABC).
Площадь основания шарового сегмента S=πr². 64π=πr². Отсюда r=8 ( Радиус основания сегмента) Площадь сферической поверхности шарового сегмента S=2πRh, где R- радиус шара. 100π=2πRh, отсюда 2Rh=100. По Пифагору R²=(R-h)²+r² или R²=R²-2Rh+h²+r². 2Rh-h²=r². Отсюда h=√(100-64)=6. R=100/(2*6)=8и1/3. Вот теперь знаем и R, и h. Формула объема шарового сегмента V=πh²(R-(1/3)*h)). Подставляем известные значения и имеем: V =π*36*(8и1/3-2)=228π. ответ: V = 228π.
64π=πr². Отсюда r=8 ( Радиус основания сегмента)
Площадь сферической поверхности шарового сегмента S=2πRh,
где R- радиус шара.
100π=2πRh, отсюда 2Rh=100.
По Пифагору R²=(R-h)²+r² или R²=R²-2Rh+h²+r². 2Rh-h²=r².
Отсюда h=√(100-64)=6.
R=100/(2*6)=8и1/3.
Вот теперь знаем и R, и h.
Формула объема шарового сегмента V=πh²(R-(1/3)*h)).
Подставляем известные значения и имеем:
V =π*36*(8и1/3-2)=228π.
ответ: V = 228π.
https://ru-static.z-dn.net/files/db3/f2bb8e148665d36051a6a0a5e42354f8.jpg
∠B=180° - ∠A=180° - 60°=120° (∠A и ∠B - внутренние односторонние
углы при параллельных прямых).
∠BTA=180°-(∠TAB+∠B)=180°-(30°+120°)=30° (сумма углов Δ)
ΔABT - равнобедренный.
АB=BT=6 cм
BC=BT+TC=6 +2=8 см
BC=AD=8 см (противоположные стороны)
BD²=AB²+AD²-2AB*ADcos60°=
=6²+8² -2*6*8*(1/2)=36+64-48=52
BD=√52=2√13 (см)
AC²=AB²+BC²-2AB*BCcos120°=
=6²+8²-2*6*8*cos(90°+30°)=
=36+64-96*(-sin30°)=100-96*(-1/2)=100+48=148
AC=√148=2√37 (см)
ответ: 2√13 см и 2√37 см.