В равнобедренном треугольнике две равные стороны называются боковыми, а третья - основанием треугольника. Точка пересечения равных сторон — вершина равнобедренного треугольника. Угол между одинаковыми сторонами считается углом при вершине, а два других — углами при основании треугольника. Являются доказанными такие свойства равнобедренного треугольника: - равенство углов при основании, - совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника, - равенство между собой двух других биссектрис (медиан, высот), - пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии. Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.
Пусть внешний угол треугольника А = внешнему углу треугольника С и = 120°, тогда найдём внутренние углы треугольника.
Рассмотрим треуг АBС, по свойству внешнего угла, внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним.
По теореме о суммах внешних углов, внешний угол А + внутренний угол А = 180°, угол А = 180-120=60°
так же и внешний угол С - угол С треуг ABC= 180-120=60°
А т.к. сумма углов треугольника = 180°, то
180-(60+60) = 180-120=60° - угол B
А если все углы треугольника равны, то треугольник равносторонний.
Объяснение:
Являются доказанными такие свойства равнобедренного треугольника:
- равенство углов при основании,
- совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника,
- равенство между собой двух других биссектрис (медиан, высот),
- пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии.
Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.