Regulāras trijstūra piramīdas MABC pamata malas garums ir cm, bet sānu šķautnes garums ir 5 cm. Aprēķini piramīdas apotēmu un pilnas virsmas laukumu! Regulāras četrstūra piramīdas MABCD pamata malas garums ir 6, bet sānu šķautnes garums ir 5. Aprēķini divplakņu kakta leņķi pie pamata!
1)Воспользуемся для решения теоремой синусов для треугольника.
ВС / Sin A = AB / Sin C = AC / Sin B.
AB = 4 * √2, угол А = 450, угол С = 300, ВС = ?
(4 * √2) / Sin 30 = BC / Sin 45.
(4 * √2) / (1 / 2) = BC / 1 / √2).
ВС / 2 = (4 * √2) / √2 = 4.
ВС = 4 * 2 = 8 см.
ответ: ВС = 8 см.
2)
Рассмотрим треугольник АОС. Так как медианы равнобедренного треугольника равны и в точке пересечения делятся в отношении 2/1, то АО = СО, следовательно треугольник АОС равнобедренный, а его углы при основании будут равны: угол А = С = (180 – 120) / 2 = 300.
Тогда по теореме синусов: АС / Sin 120 = AO / Sin 30.
12 / (√3/2) = АО / (1/2).
АО = 6 / (√3/2) = 12 / √3 = 4 * √3.
Медианы треугольника, в точке пересечении делятся в соотношении 2/1, тогда АО / ОМ = 2 / 1.
ОМ = АО / 2 = 2 * √3.
Тогда М = СК = 2 * √3 + 4 * √3 = 6 * √3.
ответ: Медианы равны 6 * √3 см
При пересечении, диагонали прямоугольника делятся пополам, а так как сами диагонали равны, то половины их тоже раны.
Треугольник, образованный меньшей стороной прямоугольника и половинками примыкающих к ней диагоналей - правильный, поскольку в нём между равными сторонами лежит угол 60°, то и остальные углы тоже 60°. Соответственно, меньшая сторона нашего прямоугольника равна половине его диагонали, то есть 14 см - это ответ.