Диагонали трапеции «высекают» в ней подобные треугольники. ∆ВОС~∆ АОД по равным углам: углы при основаниях равны как накрестлежащие; при точке О - как вертикальные. k=АО:ОС=3. Отношение площадей подобных фигур равно квадрату коэффициента их подобия. ⇒ Ѕ(АОД):Ѕ(ВОС)=3²=9 ⇒ Ѕ(АОД)=36•9=324.
Высота в ∆ АВО и ВОС общая. Отношение площадей треугольников с равными высотами равно отношению сторон, к которым высоты проведены. Ѕ(АВО)=3Ѕ(ВСО)=36•3)=108 Аналогично Ѕ(СОД)=3Ѕ(ВОС)=108. (попутно заметим, что площади треугольников, образованных частями диагоналей и боковыми сторонами трапеции всегда равны именно по этому свойству). Площадь трапеции АВСД равна сумме площадей четырех треугольников. S(АВСД)=36+324+2•108=576 ( ед. площади)
В прямоугольнике ABCD проведена биссектриса угла A до пересечения со стороной BC в точке K. Отрезок AK=8 см, угол между диагоналями прямоугольника равен 30°. Найдите стороны и площадь прямоугольника ABCD.
Обозначим точку пересечения диагоналей О.
Диагонали прямоугольника равны и точкой пересечения делятся пополам.
∆АОВ и ∆COD - равнобедренные, углы при АВ и CD равны по (180°-30°):2=75°⇒
в ∆ АВС ∠BСA=90°-75°=15°
∆ АВК - прямоугольный с острым углом ВАК=45°⇒
∠ВКА=45° ⇒ ∆ АВК равнобедренный.
АВ=АК*sin45°=(8*√2)/2=4√2 см
В ∆ АВС по т.синусов
АВ:sin15°=BC:sin75°
По таблице синусов
sin 15° =0,2588
sin75°=0,9659
4√2:0,2588=ВС:0,9659⇒
ВС=21,1127 см
S=AB•ВС=4√2•21,1127≈ 119,426 см²
------
Как вариант:
Найти из прямоугольного ∆ АВС диагональ АС:
АС=АВ:sin 15º=(4√2):0,2588
Площадь выпуклого четырехугольника равна половине произведения его диагоналей на синус угла между ними.
S=0,5•d₁•d₂•sinφ , где
d₁ и d₂ – диагонали, φ – любой из четырёх углов между ними/
Диагонали трапеции «высекают» в ней подобные треугольники. ∆ВОС~∆ АОД по равным углам: углы при основаниях равны как накрестлежащие; при точке О - как вертикальные. k=АО:ОС=3. Отношение площадей подобных фигур равно квадрату коэффициента их подобия. ⇒ Ѕ(АОД):Ѕ(ВОС)=3²=9 ⇒ Ѕ(АОД)=36•9=324.
Высота в ∆ АВО и ВОС общая. Отношение площадей треугольников с равными высотами равно отношению сторон, к которым высоты проведены. Ѕ(АВО)=3Ѕ(ВСО)=36•3)=108 Аналогично Ѕ(СОД)=3Ѕ(ВОС)=108. (попутно заметим, что площади треугольников, образованных частями диагоналей и боковыми сторонами трапеции всегда равны именно по этому свойству). Площадь трапеции АВСД равна сумме площадей четырех треугольников. S(АВСД)=36+324+2•108=576 ( ед. площади)
В прямоугольнике ABCD проведена биссектриса угла A до пересечения со стороной BC в точке K. Отрезок AK=8 см, угол между диагоналями прямоугольника равен 30°. Найдите стороны и площадь прямоугольника ABCD.
Обозначим точку пересечения диагоналей О.
Диагонали прямоугольника равны и точкой пересечения делятся пополам.
∆АОВ и ∆COD - равнобедренные, углы при АВ и CD равны по (180°-30°):2=75°⇒
в ∆ АВС ∠BСA=90°-75°=15°
∆ АВК - прямоугольный с острым углом ВАК=45°⇒
∠ВКА=45° ⇒ ∆ АВК равнобедренный.
АВ=АК*sin45°=(8*√2)/2=4√2 см
В ∆ АВС по т.синусов
АВ:sin15°=BC:sin75°
По таблице синусов
sin 15° =0,2588
sin75°=0,9659
4√2:0,2588=ВС:0,9659⇒
ВС=21,1127 см
S=AB•ВС=4√2•21,1127≈ 119,426 см²
------
Как вариант:
Найти из прямоугольного ∆ АВС диагональ АС:
АС=АВ:sin 15º=(4√2):0,2588
Площадь выпуклого четырехугольника равна половине произведения его диагоналей на синус угла между ними.
S=0,5•d₁•d₂•sinφ , где
d₁ и d₂ – диагонали, φ – любой из четырёх углов между ними/
Тогда S=0,5•{4√2):0,2588}²•0,5=≈ 119,426 см²