1.найти значение части: 40=2*(3х+7х), Х=2. Стороны 6 и 14см.
2.Сумма всех углов параллелограмма 360град. Аналогично №1 находим значение части 360=2*(5х+7Х), х=15. углы 75 и 105град.
3.Периметр сумма всех сторон, параллельные стороны равны. АВ+ВС=35см (сумма двух сторон тр-ка). АС-диагональ параллелограмма и 3-я сторона треугольника. Периметр тр-ка 35+30=60см.
4.Один из видов параллелограмма прямоугольник, т.е. его диагональ гипотенуза, значит быть 9см она не может.
6.Полученная фигура параллелограмм (диагонали в точке пересечения делятся пополам). У него противоположные стороны равны. АВ=2*6=12. Периметр треугольника 7+9+12=28
Раз диагональное сечение - прямоугольный треугольник, то есть половина квадрата со стороной, равной боковому ребру, и основание этого сечения - диагональ (тоже) квадрата в основании пирамиды, то
1. Боковое ребро равно стороне основания (то есть все ребра пирамиды равны между собой)
2. Площадь основания равна удвоенной площади диагонального сечения, то есть 32*2 = 64, соответственно, сторона равна 8.
Итак, все ребра пирамиды равны 8.
Боковая поверхность состоит из четырех правильных треугольников со стороной, равной 8. Площадь одного такого треугольника 8^2*корень(3)/4, а вся боковая поверхность имеет площадь 8^2*корень(3) = 64*корень(3);
1.найти значение части: 40=2*(3х+7х), Х=2. Стороны 6 и 14см.
2.Сумма всех углов параллелограмма 360град. Аналогично №1 находим значение части 360=2*(5х+7Х), х=15. углы 75 и 105град.
3.Периметр сумма всех сторон, параллельные стороны равны. АВ+ВС=35см (сумма двух сторон тр-ка). АС-диагональ параллелограмма и 3-я сторона треугольника. Периметр тр-ка 35+30=60см.
4.Один из видов параллелограмма прямоугольник, т.е. его диагональ гипотенуза, значит быть 9см она не может.
6.Полученная фигура параллелограмм (диагонали в точке пересечения делятся пополам). У него противоположные стороны равны. АВ=2*6=12. Периметр треугольника 7+9+12=28
Вот как мысленно можно распутать такую задачу :)
Раз диагональное сечение - прямоугольный треугольник, то есть половина квадрата со стороной, равной боковому ребру, и основание этого сечения - диагональ (тоже) квадрата в основании пирамиды, то
1. Боковое ребро равно стороне основания (то есть все ребра пирамиды равны между собой)
2. Площадь основания равна удвоенной площади диагонального сечения, то есть 32*2 = 64, соответственно, сторона равна 8.
Итак, все ребра пирамиды равны 8.
Боковая поверхность состоит из четырех правильных треугольников со стороной, равной 8. Площадь одного такого треугольника 8^2*корень(3)/4, а вся боковая поверхность имеет площадь 8^2*корень(3) = 64*корень(3);