Реши задачу В треугольнике MNP на стороне МР отмечена точка Qтак, что МQ 7 см, QP = 8 см. Найди площади треугольников MNQ и PNQ , если MN = 13 см, NP — 14 см. . 2 CM ответ: SMNQ м2; ЅРNo см
Решение дано Пользователем 21sadtylers Отличник, исправлена опечатка.
Для начала изобразим плоскость bc1d. Это совсем несложно – каждая пара точек лежит в одной из граней куба, поэтому просто соединим их. Далее проведём ТМ||С1В, ТN||C1D, соединим M и N – получим искомое сечение.
BC1D – равносторонний, т.к. каждая сторона является диагональю одинаковых квадратов. Все стороны TMN вдвое меньше сторон BC1D – это видно в треугольниках, для которых стороны TMN являются средними линиями. Получается, TMN тоже равносторонний. Найдем его сторону.
Площадь правильного треугольника можно найти по формуле S=a²√3/4.
Выразим а=√(4S/√3)=√(4*4√3/√3)=4.
Посмотрим на треугольник СМТ: он прямоугольный и равнобедренный, можем найти его стороны по теореме Пифагора:
Расстояние между параллельными прямыми есть длина перпендикулярного этим прямым отрезка, заключенного между ними.
Обозначим данные прямые а и b. Отрезок КЕ ⊥ а, КЕ ⊥ b.
М - середина КЕ, КМ=МЕ=50. Угол АМВ=90°.
Продолжим ВМ до пересечения с прямой а в точке С.
∆КМС =∆ВМЕ по катетам КМ=МЕ и вертикальным углам при М. Смежные углы АМВ=АМС=90°,АМ - высота и медиана ∆ САВ, ⇒,
АМ - биссектриса угла ВАС.
Каждая точка биссектрисы равноудалена от сторон угла. МК=МН, где МН - расстояние от М до АВ.
М - центр вписанной в угол САВ окружности с диаметром, равным расстоянию между параллельными а и b.
Наименьшее расстояние от точки до прямой – перпендикуляр, и наименьшим расстоянием от М до АВ будет радиус МН=МК окружности с диаметром КЕ=100, т.е. отрезок, равный половине КЕ:2=50 (ед. длины).
Решение дано Пользователем 21sadtylers Отличник, исправлена опечатка.
Для начала изобразим плоскость bc1d. Это совсем несложно – каждая пара точек лежит в одной из граней куба, поэтому просто соединим их. Далее проведём ТМ||С1В, ТN||C1D, соединим M и N – получим искомое сечение.
BC1D – равносторонний, т.к. каждая сторона является диагональю одинаковых квадратов. Все стороны TMN вдвое меньше сторон BC1D – это видно в треугольниках, для которых стороны TMN являются средними линиями. Получается, TMN тоже равносторонний. Найдем его сторону.
Площадь правильного треугольника можно найти по формуле S=a²√3/4.
Выразим а=√(4S/√3)=√(4*4√3/√3)=4.
Посмотрим на треугольник СМТ: он прямоугольный и равнобедренный, можем найти его стороны по теореме Пифагора:
ТМ² = 2СМ²
СМ = √(ТМ²/2) = √(4²/2) = √8 = 2√2
найдем ребро куба: 2*2√2 = 4√2
ну и площадь поверхности:
S = 6a² = 6*(4√2)² = 6*32 = 192 кв. ед.
Расстояние между параллельными прямыми есть длина перпендикулярного этим прямым отрезка, заключенного между ними.
Обозначим данные прямые а и b. Отрезок КЕ ⊥ а, КЕ ⊥ b.
М - середина КЕ, КМ=МЕ=50. Угол АМВ=90°.
Продолжим ВМ до пересечения с прямой а в точке С.
∆КМС =∆ВМЕ по катетам КМ=МЕ и вертикальным углам при М. Смежные углы АМВ=АМС=90°,АМ - высота и медиана ∆ САВ, ⇒,
АМ - биссектриса угла ВАС.
Каждая точка биссектрисы равноудалена от сторон угла. МК=МН, где МН - расстояние от М до АВ.
М - центр вписанной в угол САВ окружности с диаметром, равным расстоянию между параллельными а и b.
Наименьшее расстояние от точки до прямой – перпендикуляр, и наименьшим расстоянием от М до АВ будет радиус МН=МК окружности с диаметром КЕ=100, т.е. отрезок, равный половине КЕ:2=50 (ед. длины).