ВС=ВК+КС, так как ВК=КС по условию, то ВК=ВС÷2. ВС=10 см по условию, тогда ВК=10÷2=5 см.
Так как АВ=АС по условию, то ∆АВС – равнобедренный с основанием ВС.
Углы при основании равнобедренного треугольника равны, то есть угол АСВ=угол АВС=55°
Так как ВК=КС, то АК – медиана проведенная к ВС.
Медиана, проведённая к основанию равнобедренного треугольника, так же является биссектрисой и высотой. Следовательно АК – биссектриса, тогда угол КАС=угол ВАК=35°, угол ВАС=угол ВАК*2=35°*2=70°. И угол АКВ=90°.
Дано:
AB = AC
угол BAK = 35°
BC = 10 см
ВК = KC
угол ABC = 55°
Найти:
ВК, угол KAC, угол BAC, угол AKB, угол ACB
ВС=ВК+КС, так как ВК=КС по условию, то ВК=ВС÷2. ВС=10 см по условию, тогда ВК=10÷2=5 см.
Так как АВ=АС по условию, то ∆АВС – равнобедренный с основанием ВС.
Углы при основании равнобедренного треугольника равны, то есть угол АСВ=угол АВС=55°
Так как ВК=КС, то АК – медиана проведенная к ВС.
Медиана, проведённая к основанию равнобедренного треугольника, так же является биссектрисой и высотой. Следовательно АК – биссектриса, тогда угол КАС=угол ВАК=35°, угол ВАС=угол ВАК*2=35°*2=70°. И угол АКВ=90°.
ответ: 5 см, 35°, 70°, 90°, 55°.
Если автор задания хотел узнать, как выразить длину биссектрисы прямого угла через длины катетов, то решение такое:
Имеем прямоугольный треугольник АВС с прямым углом С.
Катеты а и b, гипотенуза с. Пусть биссектриса СД равна х.
Из точки Д опустим перпендикуляр на АС.
Так как угол ДСЕ равен (пи/4) = 45 градусов, то СЕ = ДЕ = x/√2.
Используем подобие треугольников ДЕА и ВСА.
(x/√2)/a = (b - (x/√2))/b,
bx = ab√2 - (ax√2)/√2,
bx = ab√2 - ax,
ax + bx = ab√2,
x(a + b) = ab√2,
x = ab√2/(a +b).
ответ: СД = ab√2/(a +b).