1) Если точка X принадлежит прямой AB, то это середина отрезка AB.
2) Если речь идёт о какой либо плоскости, проходящей через точки A, B, то геометрическим местом точек, равноудалённых от точек A и B в этой плоскости, является серединный перпендикуляр к отрезку AB. За точку X можно взять любую точку этого перпендикуляра.
3) Если точки A и B взяты в пространстве, то точкой X может служить любая точка плоскости, перпендикулярной отрезку AB, и прходящей через середину этого отрезка.
ответ:1) 105°, 85°, 105°, 85°. 2)115°, 65°, 115°, 65°.
Объяснение:
1) Сумма углов, прилегающих к одной из сторон, равна 180°.
По условию сумма двух углов равна 210°, значит они противоположные, т. к. 210° > 180°.
Противоположные углы ромба равны ⇒ 210°:2=105°.
180°-105°=85°.
ответ: 105°, 85°, 105°, 85°.
2) Пусть х° - больший угол, тогда (х°-50°) - больший угол ромба.
Сумма двух углов ромба, прилегающих к одной стороне, равна 180°.
Составим уравнение:
х+х-50=180, 2х=230, х=115. х-50=65.
ответ: 115°, 65°, 115°, 65°.
Отметим какие-либо точки A и B.
Объяснение:
1) Если точка X принадлежит прямой AB, то это середина отрезка AB.
2) Если речь идёт о какой либо плоскости, проходящей через точки A, B, то геометрическим местом точек, равноудалённых от точек A и B в этой плоскости, является серединный перпендикуляр к отрезку AB. За точку X можно взять любую точку этого перпендикуляра.
3) Если точки A и B взяты в пространстве, то точкой X может служить любая точка плоскости, перпендикулярной отрезку AB, и прходящей через середину этого отрезка.