Пирамида SABCD правильная, значит в основании ее лежит квадрат, а боковые грани - равносторонние треугольники со стороной = 6 (дано). Апофема пирамиды SABCD (высота ее боковых граней) равна SH=√(SD²-DH²) = √(36-9) = 3√3см.
Площадь БОКОВОЙ поверхности пирамиды DTSC - это сумма площадей ее БОКОВЫХ граней: Stcd+Stsd+Ssdc. (D - вершина этой пирамиды). TD=(2/3)*AD = (2/3)*6 = 4 (из соотношения AT:TD=1:2).
Stcd = (1/2)*TD*DC = (1/2)*4*6 = 12см².
Stsd = (1/2)*TD*SH = (1/2)*4*3√3 = 6√3см².
Ssdc = (1/2)*DC*SH = (1/2)*6*3√3 = 9√3см².
Sбок = (12+15√3)см².
ответ: площадь боковой поверхности пирамиды DTSC равна
1. Обозначим точки пересечения с прямой а: А1 и В1 соответственно точкам А и В. Расстояние от точки до прямой определяется длиной перпендикуляра, следовательно, когда сделаем чертеж, получим прямоугольную трапецию АА1ВВ1. Обозначим середину отрезка АВ точкой С, и точку на прямой а С1. То есть получили: АА1, СС1 и ВВ1 ⊥ l, и АА1, СС1 и ВВ1 ║l.
2. Зная, что АС=СВ (по условию) АА1, СС1 и ВВ1 ║l (п. 1) получим: А1С1=С1В1 (по теореме Фалеса).
3. Найдем СС1 по формуле средней линии трапеции: (4+6)/2=5 см
Пирамида SABCD правильная, значит в основании ее лежит квадрат, а боковые грани - равносторонние треугольники со стороной = 6 (дано). Апофема пирамиды SABCD (высота ее боковых граней) равна SH=√(SD²-DH²) = √(36-9) = 3√3см.
Площадь БОКОВОЙ поверхности пирамиды DTSC - это сумма площадей ее БОКОВЫХ граней: Stcd+Stsd+Ssdc. (D - вершина этой пирамиды). TD=(2/3)*AD = (2/3)*6 = 4 (из соотношения AT:TD=1:2).
Stcd = (1/2)*TD*DC = (1/2)*4*6 = 12см².
Stsd = (1/2)*TD*SH = (1/2)*4*3√3 = 6√3см².
Ssdc = (1/2)*DC*SH = (1/2)*6*3√3 = 9√3см².
Sбок = (12+15√3)см².
ответ: площадь боковой поверхности пирамиды DTSC равна
Sdtsc=(12+15√3)см².
1. Обозначим точки пересечения с прямой а: А1 и В1 соответственно точкам А и В. Расстояние от точки до прямой определяется длиной перпендикуляра, следовательно, когда сделаем чертеж, получим прямоугольную трапецию АА1ВВ1. Обозначим середину отрезка АВ точкой С, и точку на прямой а С1. То есть получили: АА1, СС1 и ВВ1 ⊥ l, и АА1, СС1 и ВВ1 ║l.
2. Зная, что АС=СВ (по условию) АА1, СС1 и ВВ1 ║l (п. 1) получим: А1С1=С1В1 (по теореме Фалеса).
3. Найдем СС1 по формуле средней линии трапеции: (4+6)/2=5 см
ответ: 5 см