Верно. АВ║OD по условию, AD║ВО, так как лежат на параллельных основаниях трапеции. Если в четырехугольнике противоположные стороны параллельны, то это параллелограмм.
б) ABOD – ромб.
Верно. Так как если в параллелограмме смежные стороны равны, то это ромб.
в) AOCD – ромб.
Неверно. АО║CD по условию, ОС║AD так как лежат на параллельных основаниях трапеции. Значит AOCD - параллелограмм. Но смежные стороны в нем не равны (AD ≠ AO по условию), значит это не ромб.
г) ∠COD=∠AOD
Неверно. Диагональ параллелограмма не является биссектрисой его углов.
д) ∠AOD=∠BOA
Верно, так как диагонали ромба лежат на биссектрисах его углов.
1. Строим угол C, равный данному углу Е. Для этого
строим луч СН; проводим дуги с произвольным, но одинаковым радиусом с центрами в точках Е и С.; D и F - точки пересечения дуги со сторонами угла Е, К - точка пересечения дуги с лучом СН; проводим дугу с центром в точке F, радиусом FD, затем с тем же радиусом с центром в точке К. Точка пересечения дуг - L. Проводим луч CL. Угол LCK равен данному углу Е.
2. На луче СН откладываем отрезок СА = b.
3. На луче CL откладываем отрезок СВ = а. Соединяем точки А и В.
а) ABOD – параллелограмм.
Верно. АВ║OD по условию, AD║ВО, так как лежат на параллельных основаниях трапеции. Если в четырехугольнике противоположные стороны параллельны, то это параллелограмм.
б) ABOD – ромб.
Верно. Так как если в параллелограмме смежные стороны равны, то это ромб.
в) AOCD – ромб.
Неверно. АО║CD по условию, ОС║AD так как лежат на параллельных основаниях трапеции. Значит AOCD - параллелограмм. Но смежные стороны в нем не равны (AD ≠ AO по условию), значит это не ромб.
г) ∠COD=∠AOD
Неверно. Диагональ параллелограмма не является биссектрисой его углов.
д) ∠AOD=∠BOA
Верно, так как диагонали ромба лежат на биссектрисах его углов.
1. Строим угол C, равный данному углу Е. Для этого
строим луч СН; проводим дуги с произвольным, но одинаковым радиусом с центрами в точках Е и С.; D и F - точки пересечения дуги со сторонами угла Е, К - точка пересечения дуги с лучом СН; проводим дугу с центром в точке F, радиусом FD, затем с тем же радиусом с центром в точке К. Точка пересечения дуг - L. Проводим луч CL. Угол LCK равен данному углу Е.2. На луче СН откладываем отрезок СА = b.
3. На луче CL откладываем отрезок СВ = а. Соединяем точки А и В.
Треугольник АВС - искомый.