ответ: после построения диагоналей ромб разбивается на 4 треугольника. диагонали ромба располагаются под прямым углом, то есть, треугольники, которые образовались, оказываются прямоугольными.
обозначим большую и малую диагонали ромба как d₁ и d₂, а углы ромба — а (острый) и в (тупой), теперь из формулы
Бери циркуль, линейку, карандаш, строй сначала квадрат, будем его крутить. Пусть квадрат называется незатейливо АВСД, крутить будем относительно вершины А. 1. Ставишь циркуль иголкой в вершину А, вторую ножку циркуля совмещаешь с точкой В. Проводишь окружность радиуса АВ с центром в А. 2. Иголку циркуля переносишь в точку В, и не изменяя раствор циркуля, делаешь на окружности в направлении вращения засечку. 3. Переносишь иголку циркуля на засечку, и продолжая в том же направлении, делаешь на окружности вторую засечку. Это будет точка В1 - новая вершина повёрнутого квадрата. 4. Далее шаги 2 и 3 повторяешь для точки Д, и таким же образом делаешь первую засечку, и вторую засечку. Два шага по окружности. Второй шаг даст тебе точку Д1 - новую вершину повёрнутого квадрата. 5. Возвращаешь иголку циркуля в точку центра вращения А. Строишь окружность (на самом деле будет достаточно половины окружности в направлении вращения) радиусом как диагональ квадрата, то есть АС. 6. Таким же образом делаешь последовательно две засечки, и вторая даст тебе точку С1 - новую точку повёрнутого квадрата. 7. Соединяешь последовательно точки А В1 С1 Д1, и получаешь повёрнутый квадрат. Если всё сделано аккуратно, без болтанки циркулем и тремора рук, то картинка получится вполне красивая.
ответ: после построения диагоналей ромб разбивается на 4 треугольника. диагонали ромба располагаются под прямым углом, то есть, треугольники, которые образовались, оказываются прямоугольными.
обозначим большую и малую диагонали ромба как d₁ и d₂, а углы ромба — а (острый) и в (тупой), теперь из формулы
tg a = 2/((d₁/d₂)-(d₂/d₁)) находим
tg a = 2/((2√3 /2)-(2/2√3)) = 2/(√3-1/√3)=
2/(√3-√3/3=2/(√3(1-1/3)= 2/(√3(2/3)=
2√3/2=√3
tg 60°=√3
углы ромба 60° и 120°
подробнее - на -
объяснение: